Art. 69 - Confezionamento ed esecuzione getto calcestruzzo

1. Prima dell'inizio del lavoro, l'impresa dovrà sottoporre alla direzione dei lavori l'elenco e la descrizione dettagliata delle attrezzature che intende impiegare per il confezionamento del calcestruzzo; queste dovranno essere di potenzialità proporzionata all'entità e alla durata del lavoro e dovranno essere armonicamente proporzionate in tutti i loro componenti in modo da assicurare la continuità del ciclo lavorativo.

L'impianto di confezionamento del calcestruzzo dovrà essere fisso e di tipo approvato dalla direzione dei lavori.

L'organizzazione preposta a detti impianti dovrà comprendere tutte le persone e le professionalità necessarie per assicurare la costanza di qualità dei prodotti confezionati.

I predosatori dovranno essere in numero sufficiente a permettere le selezioni di pezzature necessarie.

Il mescolatore dovrà essere di tipo e capacità approvate dalla direzione dei lavori e dovrà essere atto a produrre calcestruzzo uniforme e a scaricarlo senza che avvenga segregazione apprezzabile. In particolare, dovrà essere controllata l'usura delle lame, che verranno sostituite allorquando quest'ultima superi il valore di 2 cm. All'interno del mescolatore si dovrà anche controllare giornalmente, prima dell'inizio del lavoro, che non siano presenti incrostazioni di calcestruzzo indurito.

La dosatura dei materiali per il confezionamento del calcestruzzo nei rapporti definiti con lo studio di progetto e la sua accettazione da parte della direzione dei lavori, dovrà essere fatta con impianti interamente automatici, esclusivamente a massa, con bilance del tipo a quadrante, di agevole lettura e con registrazione delle masse di ogni bilancia. A spese dell'impresa andrà effettuata la verifica della taratura prima dell'inizio dei lavori e con cadenza settimanale, nonché ogni qualvolta risulti necessario, fornendo alla direzione dei lavori la documentazione relativa.

La direzione dei lavori, allo scopo di controllare la potenza assorbita dai mescolatori, si riserverà il diritto di fare installare nell'impianto di confezionamento dei registratori di assorbimento elettrico, alla cui installazione e spesa dovrà provvedere l'impresa appaltatrice. La direzione dei lavori potrà richiedere all'impresa l'installazione sulle attrezzature di dispositivi e metodi di controllo per verificarne in permanenza il buon funzionamento. In particolare, la dosatura degli aggregati lapidei, del cemento, dell'acqua e degli additivi dovrà soddisfare alle condizioni seguenti:

- degli aggregati potrà essere determinata la massa cumulativa sulla medesima bilancia, purché le diverse frazioni granulometriche (o pezzature) vengano misurate con determinazioni distinte;
- la massa del cemento dovrà essere determinata su una bilancia separata;
- l'acqua dovrà essere misurata in apposito recipiente tarato, provvisto di dispositivo che consenta automaticamente l'erogazione effettiva con la sensibilità del 2%;
- gli additivi dovranno essere aggiunti agli impasti direttamente nel miscelatore a mezzo di dispositivi di distribuzione dotati di misuratori.

Il ciclo di dosaggio dovrà essere automaticamente interrotto qualora non siano realizzati i ritorni a zero delle bilance, qualora la massa di ogni componente scarti dal valore prescritto oltre le tolleranze fissate di seguito e infine qualora la sequenza del ciclo di dosaggio non si svolga correttamente.

L'interruzione del sistema automatico di dosaggio e la sua sostituzione con regolazione a mano potrà essere effettuata solo previa autorizzazione della direzione dei lavori.

Nella composizione del calcestruzzo, a dosatura eseguita e immediatamente prima dell'introduzione nel mescolatore, saranno ammesse le seguenti tolleranze:

- 2% sulla massa di ogni pezzatura dell'aggregato;
- 3% sulla massa totale dei materiali granulari;
- 2% sulla massa del cemento.

Vanno rispettate le tolleranze ammesse sulla composizione granulometrica di progetto. Tali tolleranze devono essere verificate giornalmente tramite lettura delle determinazioni della massa per almeno dieci impasti consecutivi.

2. Il tempo di mescolamento deve essere quello raccomandato dalla ditta costruttrice l'impianto di confezionamento del calcestruzzo e, in ogni caso, non potrà essere inferiore a un minuto. L'uniformità della miscela deve essere controllata dalla direzione dei lavori prelevando campioni di calcestruzzo all'inizio, alla

metà e alla fine dello scarico di un impasto e controllando che i tre prelievi non presentino abbassamenti al cono che differiscono tra di loro di più di 20 mm né composizione sensibilmente diversa.

La direzione dei lavori potrà rifiutare gli impasti non conformi a questa prescrizione. Inoltre, qualora le differenze in questione riguardino più del 5% delle misure effettuate nel corso di una medesima giornata di produzione, le attrezzature di confezionamento saranno completamente verificate e il cantiere non potrà riprendere che su ordine esplicito della direzione dei lavori e dopo che l'impresa abbia prodotto la prova di una modifica o di una messa a punto degli impianti tale da migliorare la regolarità della produzione del calcestruzzo.

- 3. Il trasporto del calcestruzzo dall'impianto di confezionamento al cantiere di posa in opera e tutte le operazioni di posa in opera dovranno comunque essere eseguite in modo da non alterare gli impasti, evitando in particolare ogni forma di segregazione, la formazione di grumi e altri fenomeni connessi all'inizio della presa.
 - Se durante il trasporto si manifesterà una segregazione, dovrà essere modificata in accordo con la direzione dei lavori la composizione dell'impasto, soprattutto se persiste dopo variazione del rapporto acqua/cemento. Se ciò malgrado la segregazione non dovesse essere eliminata, dovrà essere studiato nuovamente il sistema di produzione e trasporto del calcestruzzo.
- 4. L'appaltatore dovrà fornire alla direzione dei lavori, prima o durante l'esecuzione del getto, il documento di consegna del produttore del calcestruzzo, contenente almeno i seguenti dati:
 - impianto di produzione;
 - quantità in metri cubi del calcestruzzo trasportato;
 - dichiarazione di conformità alle disposizioni della norma UNI EN 206;
 - denominazione o marchio dell'ente di certificazione;
 - ora di carico;
 - ore di inizio e fine scarico;
 - dati dell'appaltatore;
 - cantiere di destinazione.

Per il calcestruzzo a prestazione garantita, la direzione dei lavori potrà chiedere le seguenti informazioni:

- tipo e classe di resistenza del cemento;
- tipo di aggregato;
- tipo di additivi eventualmente aggiunti;
- rapporto acqua/cemento;
- prove di controllo di produzione del calcestruzzo;
- sviluppo della resistenza;
- provenienza dei materiali componenti.

Per i calcestruzzi di particolare composizione dovranno essere fornite informazioni circa la composizione, il rapporto acqua/cemento e la dimensione massima dell'aggregato.

Il direttore dei lavori potrà rifiutare il calcestruzzo qualora non rispetti le prescrizioni di legge e contrattuali, espresse almeno in termini di resistenza contrattualistica e classe di consistenza.

Le considerazioni su esposte valgono anche per il calcestruzzo confezionato in cantiere.

- 5. L'impresa esecutrice è tenuta a comunicare con dovuto anticipo al direttore dei lavori il programma dei getti del calcestruzzo indicando:
 - il luogo di getto;
 - la struttura interessata dal getto;
 - la classe di resistenza e di consistenza del calcestruzzo.

I getti dovrebbero avere inizio solo dopo che il direttore dei lavori ha verificato:

- la preparazione e rettifica dei piani di posa;
- la pulizia delle casseforme;
- la posizione e corrispondenza al progetto delle armature e del copriferro;
- la posizione delle eventuali guaine dei cavi di precompressione;
- la posizione degli inserti (giunti, water stop, ecc.);
- l'umidificazione a rifiuto delle superfici assorbenti o la stesura del disarmante.

Nel caso di getti contro terra è bene controllare che siano eseguite, in conformità alle disposizioni di progetto, le seguenti operazioni:

- la pulizia del sottofondo;

- la posizione di eventuali drenaggi;
- la stesa di materiale isolante e/o di collegamento.
- 6. Prima dell'esecuzione del getto, saranno disposte le casseforme e le armature di progetto, secondo le modalità disposte dagli articoli ad esse relativi.

In fase di montaggio delle armature e dei casseri vengono predisposti i distanziali, appositi elementi che allontanano le armature dalle pareti delle casseforme tenendole in posizione durante il getto e garantendo la corretta esecuzione del copriferro.

L'appaltatore dovrà adottare tutti gli accorgimenti necessari affinché le gabbie mantengano la posizione di progetto all'interno delle casseforme durante il getto.

I getti devono essere eseguiti a strati di spessore limitato per consentirne la vibrazione completa ed evitare il fenomeno della segregazione dei materiali, spostamenti e danni alle armature, guaine, ancoraggi, ecc.

Il calcestruzzo pompabile deve avere una consistenza semifluida, con uno slump non inferiore a 10-15 cm. Inoltre, l'aggregato deve avere diametro massimo non superiore ad 1/3 del diametro interno del tubo della pompa.

Le pompe a rotore o a pistone devono essere impiegate per calcestruzzo avente diametro massimo dell'aggregato non inferiore a 15 mm. In caso di uso di pompe a pistone devono adoperarsi le necessarie riduzioni del diametro del tubo in relazione al diametro massimo dell'inerte che non deve essere superiore a 1/3 del diametro interno del tubo di distribuzione.

Le pompe pneumatiche devono adoperarsi per i betoncini e le malte o pasta di cemento.

La direzione dei lavori, durante l'esecuzione del getto del calcestruzzo, dovrà verificare la profondità degli strati e la distribuzione uniforme entro le casseformi, l'uniformità della compattazione senza fenomeni di segregazione e gli accorgimenti per evitare danni dovuti alle vibrazioni o urti alle strutture già gettate.

L'appaltatore ha l'onere di approntare i necessari accorgimenti per proteggere le strutture appena gettate dalle condizioni atmosferiche negative o estreme, quali pioggia, freddo, caldo. La superficie dei getti deve essere mantenuta umida per almeno 15 giorni e comunque fino a 28 giorni dall'esecuzione, in climi caldi e secchi.

Non si deve mettere in opera calcestruzzo a temperature minori di 0 °C, salvo il ricorso a opportune cautele autorizzate dalla direzione dei lavori.

- 7. Lo scarico del calcestruzzo dal mezzo di trasporto nelle casseforme si deve effettuare applicando tutti gli accorgimenti atti a evitare la segregazione.
 - È opportuno che l'altezza di caduta libera del calcestruzzo fresco, indipendentemente dal sistema di movimentazione e getto, non ecceda 50-80 cm e che lo spessore degli strati orizzontali di calcestruzzo, misurato dopo la vibrazione, non sia maggiore di 30 cm.
 - Si deve evitare di scaricare il calcestruzzo in cumuli da stendere poi successivamente con l'impiego dei vibratori, in quanto questo procedimento può provocare l'affioramento della pasta cementizia e la segregazione. Per limitare l'altezza di caduta libera del calcestruzzo, è opportuno utilizzare un tubo di getto che consenta al calcestruzzo di fluire all'interno di quello precedentemente messo in opera.

Nei getti in pendenza è opportuno predisporre dei cordolini d'arresto atti a evitare la formazione di lingue di calcestruzzo tanto sottili da non poter essere compattate in modo efficace.

Nel caso di getti in presenza d'acqua è opportuno:

- adottare gli accorgimenti atti a impedire che l'acqua dilavi il calcestruzzo e ne pregiudichi la regolare presa e maturazione;
- provvedere, con i mezzi più adeguati, alla deviazione dell'acqua e adottare miscele di calcestruzzo, coesive, con caratteristiche antidilavamento, preventivamente provate e autorizzate dal direttore dei lavori;
- utilizzare una tecnica di messa in opera che permetta di gettare il calcestruzzo fresco dentro il calcestruzzo fresco precedentemente gettato, in modo da far rifluire il calcestruzzo verso l'alto, limitando così il contatto diretto tra l'acqua e il calcestruzzo fresco in movimento.
- 8. Se si adopera calcestruzzo autocompattante, esso deve essere versato nelle casseforme in modo da evitare la segregazione e favorire il flusso attraverso le armature e le parti più difficili da raggiungere nelle casseforme. L'immissione per mezzo di una tubazione flessibile può facilitare la distribuzione del calcestruzzo. Se si usa una pompa, una tramoggia o se si fa uso della benna, il terminale di gomma deve essere predisposto in modo che il calcestruzzo possa distribuirsi omogeneamente entro la cassaforma. Per limitare il tenore d'aria occlusa è opportuno che il tubo di scarico rimanga sempre immerso nel calcestruzzo.

Nel caso di getti verticali e impiego di pompa, qualora le condizioni operative lo permettano, si suggerisce di immettere il calcestruzzo dal fondo. Questo accorgimento favorisce la fuoriuscita dell'aria e limita la presenza di bolle d'aria sulla superficie. L'obiettivo è raggiunto fissando al fondo della cassaforma un raccordo di tubazione per pompa, munito di saracinesca, collegato al terminale della tubazione della pompa. Indicativamente un calcestruzzo auto-compattante ben formulato ha una distanza di scorrimento orizzontale di circa 10 m. Tale distanza dipende comunque anche dalla densità delle armature.

- 9. Per i getti in climi freddi, si dovranno rispettare le prescrizioni di cui al presente comma. Si definisce clima freddo una condizione climatica in cui, per tre giorni consecutivi, si verifica almeno una delle seguenti condizioni:
 - la temperatura media dell'aria è inferiore a 5 °C;
 - la temperatura dell'aria non supera 10 °C per più di 12 ore.

Prima del getto si deve verificare che tutte le superfici a contatto con il calcestruzzo siano a temperatura \geq +5 °C. La neve e il ghiaccio, se presenti, devono essere rimossi immediatamente prima del getto dalle casseforme, dalle armature e dal fondo. I getti all'esterno devono essere sospesi se la temperatura dell'aria è \leq 0 °C. Tale limitazione non si applica nel caso di getti in ambiente protetto o qualora siano predisposti opportuni accorgimenti approvati dalla direzione dei lavori (per esempio, riscaldamento dei costituenti il calcestruzzo, riscaldamento dell'ambiente, ecc.).

Il calcestruzzo deve essere protetto dagli effetti del clima freddo durante tutte le fasi di preparazione, movimentazione, messa in opera, maturazione.

L'appaltatore deve eventualmente coibentare la cassaforma fino al raggiungimento della resistenza prescritta. In fase di stagionatura, si consiglia di ricorrere all'uso di agenti anti-evaporanti nel caso di superfici piane, o alla copertura negli altri casi, e di evitare ogni apporto d'acqua sulla superficie.

Gli elementi a sezione sottile messi in opera in casseforme non coibentate, esposti sin dall'inizio a basse temperature ambientali, richiedono un'attenta e sorvegliata stagionatura.

Nel caso in cui le condizioni climatiche portino al congelamento dell'acqua prima che il calcestruzzo abbia raggiunto una sufficiente resistenza alla compressione (5 N/mm²), il conglomerato può danneggiarsi in modo irreversibile.

Il valore limite (5 N/mm²) corrisponde ad un grado d'idratazione sufficiente a ridurre il contenuto in acqua libera e a formare un volume d'idrati in grado di ridurre gli effetti negativi dovuti al gelo.

Durante le stagioni intermedie e/o in condizioni climatiche particolari (alta montagna) nel corso delle quali c'è comunque possibilità di gelo, tutte le superfici del calcestruzzo vanno protette, dopo la messa in opera, per almeno 24 ore. La protezione nei riguardi del gelo durante le prime 24 ore non impedisce comunque un ritardo, anche sensibile, nell'acquisizione delle resistenze nel tempo.

Nella tabella seguente sono riportate le temperature consigliate per il calcestruzzo in relazione alle condizioni climatiche ed alle dimensioni del getto.

Dimensione minima della sezione (mm²)			
< 300	300 ÷ 900	900 ÷ 1800	> 1800
Temperatura minima del calcestruzzo al momento della messa i n opera			
13°C	10°C	7°C	5°C

Durante il periodo freddo la temperatura del calcestruzzo fresco messo in opera nelle casseforme non dovrebbe essere inferiore ai valori riportati nel prospetto precedente. In relazione alla temperatura ambiente e ai tempi di attesa e di trasporto, si deve prevedere un raffreddamento di 2-5 °C tra il termine della miscelazione e la messa in opera. Durante il periodo freddo è rilevante l'effetto protettivo delle casseforme. Quelle metalliche, per esempio, offrono una protezione efficace solo se sono opportunamente coibentate.

Al termine del periodo di protezione, necessario alla maturazione, il calcestruzzo deve essere raffreddato gradatamente per evitare il rischio di fessure provocate dalla differenza di temperatura tra parte interna ed esterna. Si consiglia di allontanare gradatamente le protezioni, facendo in modo che il calcestruzzo raggiunga gradatamente l'equilibrio termico con l'ambiente.

10. Per i getti in climi caldi, si dovranno rispettare le prescrizioni di cui al presente comma.

Il clima caldo influenza la qualità sia del calcestruzzo fresco che di quello indurito. Infatti, provoca una troppo rapida evaporazione dell'acqua di impasto e una velocità di idratazione del cemento eccessivamente elevata. Le condizioni che caratterizzano il clima caldo sono:

- temperatura ambiente elevata;
- bassa umidità relativa;
- forte ventilazione (non necessariamente nella sola stagione calda);
- forte irraggiamento solare;
- temperatura elevata del calcestruzzo.

I potenziali problemi per il calcestruzzo fresco riguardano:

- aumento del fabbisogno d'acqua;
- veloce perdita di lavorabilità e conseguente tendenza a rapprendere nel corso della messa in opera;
- riduzione del tempo di presa con connessi problemi di messa in opera, di compattazione, di finitura e rischio di formazione di giunti freddi;
- tendenza alla formazione di fessure per ritiro plastico;
- difficoltà nel controllo dell'aria inglobata.

I potenziali problemi per il calcestruzzo indurito riguardano:

- riduzione della resistenza a 28 giorni e penalizzazione nello sviluppo delle resistenze a scadenze più lunghe, sia per la maggior richiesta di acqua sia per effetto del prematuro indurimento del calcestruzzo;
- maggior ritiro per perdita di acqua;
- probabili fessure per effetto dei gradienti termici (picco di temperatura interno e gradiente termico verso l'esterno);
- ridotta durabilità per effetto della diffusa micro-fessurazione;
- forte variabilità nella qualità della superficie dovuta alle differenti velocità di idratazione;
- maggior permeabilità.

Durante le operazioni di getto la temperatura dell'impasto non deve superare 35 °C; tale limite dovrà essere convenientemente ridotto nel caso di getti di grandi dimensioni. Esistono diversi metodi per raffreddare il calcestruzzo; il più semplice consiste nell'utilizzo d'acqua molto fredda o di ghiaccio in sostituzione di parte dell'acqua d'impasto. Per ritardare la presa del cemento e facilitare la posa e la finitura del calcestruzzo, si possono aggiungere additivi ritardanti o fluidificanti ritardanti di presa, preventivamente autorizzati dalla direzione dei lavori.

I getti di calcestruzzo in climi caldi devono essere eseguiti di mattina, di sera o di notte, ovvero quando la temperatura risulta più bassa.

I calcestruzzi da impiegare nei climi caldi dovranno essere confezionati preferibilmente con cementi a basso calore di idratazione oppure aggiungendo all'impasto additivi ritardanti.

Il getto successivamente deve essere trattato con acqua nebulizzata e con barriere frangivento per ridurre l'evaporazione dell'acqua di impasto.

Nei casi estremi il calcestruzzo potrà essere confezionato raffreddando i componenti, per esempio tenendo all'ombra gli inerti e aggiungendo ghiaccio all'acqua. In tal caso, prima dell'esecuzione del getto entro le casseforme, la direzione dei lavori dovrà accertarsi che il ghiaccio risulti completamente disciolto.

- 11. Le interruzioni del getto devono essere autorizzate dalla direzione dei lavori. Per quanto possibile, i getti devono essere eseguiti senza soluzione di continuità, in modo da evitare le riprese e conseguire la necessaria continuità strutturale. Per ottenere ciò, è opportuno ridurre al minimo il tempo di ricopertura tra gli strati successivi, in modo che mediante vibrazione si ottenga la monoliticità del calcestruzzo.
 - Qualora siano inevitabili le riprese di getto, è necessario che la superficie del getto su cui si prevede la ripresa sia lasciata quanto più possibile corrugata. Alternativamente, la superficie deve essere scalfita e pulita dai detriti, in modo da migliorare l'adesione con il getto successivo. L'adesione può essere migliorata con specifici adesivi per ripresa di getto (resine) o con tecniche diverse che prevedono l'utilizzo di additivi ritardanti o ritardanti superficiali da aggiungere al calcestruzzo o da applicare sulla superficie.

In sintesi:

- le riprese del getto su calcestruzzo fresco possono essere eseguite mediante l'impiego di additivi ritardanti nel dosaggio necessario in relazione alla composizione del calcestruzzo;
- le riprese dei getti su calcestruzzo indurito devono prevedere superfici di ripresa del getto precedente molto rugose, che devono essere accuratamente pulite e superficialmente trattate per assicurare la massima adesione tra i due getti di calcestruzzo.

La superficie di ripresa del getto di calcestruzzo può essere ottenuta con:

- scarificazione della superficie del calcestruzzo già gettato;
- spruzzando sulla superficie del getto una dose di additivo ritardante la presa;
- collegando i due getti con malta di collegamento a ritiro compensato.

Quando sono presenti armature metalliche (barre) attraversanti le superfici di ripresa, occorre fare sì che tali barre, in grado per la loro natura di resistere al taglio, possano funzionare più efficacemente come elementi tesi in tralicci resistenti agli scorrimenti, essendo gli elementi compressi costituiti da aste virtuali di calcestruzzo che, come si è detto in precedenza, abbiano a trovare una buona imposta ortogonale rispetto al loro asse (questo è, per esempio, il caso delle travi gettate in più riprese sulla loro altezza).

Tra le riprese di getto sono da evitare i distacchi, le discontinuità o le differenze d'aspetto e colore.

Nel caso di ripresa di getti di calcestruzzo a vista devono eseguirsi le ulteriori disposizioni del direttore dei lavori.

12. Quando il calcestruzzo fresco è versato nella cassaforma, contiene molti vuoti e tasche d'aria racchiusi tra gli aggregati grossolani rivestiti parzialmente da malta. Sarà effettuata pertanto la compattazione mediante vibrazione, centrifugazione, battitura e assestamento.

Nel predisporre il sistema di compattazione, si deve prendere in considerazione la consistenza effettiva del calcestruzzo al momento della messa in opera che, per effetto della temperatura e della durata di trasporto, può essere inferiore a quella rilevata al termine dell'impasto.

La compattazione del calcestruzzo deve evitare la formazione di vuoti, soprattutto nelle zone di copriferro.

- 13. Per una corretta stagionatura del calcestruzzo è necessario seguire le seguenti disposizioni:
 - prima della messa in opera:
 - saturare a rifiuto il sottofondo e le casseforme di legno, oppure isolare il sottofondo con fogli di plastica e impermeabilizzare le casseforme con disarmante;
 - la temperatura del calcestruzzo al momento della messa in opera deve essere ≤ 0 °C, raffreddando, se necessario, gli aggregati e l'acqua di miscela.
 - durante la messa in opera:
 - erigere temporanee barriere frangivento per ridurne la velocità sulla superficie del calcestruzzo;
 - erigere protezioni temporanee contro l'irraggiamento diretto del sole;
 - proteggere il calcestruzzo con coperture temporanee, quali fogli di polietilene, nell'intervallo fra la messa in opera e la finitura;
 - ridurre il tempo fra la messa in opera e l'inizio della stagionatura protetta.
 - dopo la messa in opera:
 - minimizzare l'evaporazione proteggendo il calcestruzzo immediatamente dopo la finitura con membrane impermeabili, umidificazione a nebbia o copertura;
 - la massima temperatura ammissibile all'interno delle sezioni è di 70 °C;
 - la differenza massima di temperatura fra l'interno e l'esterno è di 20 °C;
 - la massima differenza di temperatura fra il calcestruzzo messo in opera e le parti già indurite o altri elementi della struttura è di 15 °C.
- 14. I metodi di stagionatura proposti dall'appaltatore dovranno essere preventivamente sottoposti all'esame del direttore dei lavori, che potrà richiedere le opportune verifiche sperimentali.

Durante il periodo di stagionatura protetta, si dovrà evitare che i getti di calcestruzzo subiscano urti, vibrazioni e sollecitazioni di ogni genere.

Il metodo di stagionatura prescelto dovrà assicurare che le variazioni termiche differenziali nella sezione trasversale delle strutture, da misurare con serie di termocoppie, non provochino fessure o cavillature tali da compromettere le caratteristiche del calcestruzzo indurito.

Per determinare lo sviluppo della resistenza e la durata della stagionatura del calcestruzzo si farà riferimento alla norma UNI EN 206.

L'indicazione circa la durata di stagionatura, necessaria a ottenere la durabilità e impermeabilità dello strato superficiale, non deve essere confusa con il tempo necessario al raggiungimento della resistenza prescritta per la rimozione delle casseforme e i conseguenti aspetti di sicurezza strutturale. Per limitare la perdita d'acqua per evaporazione si adottano i seguenti metodi:

- mantenere il getto nelle casseforme per un tempo adeguato (3-7 giorni);
- coprire la superficie del calcestruzzo con fogli di plastica, a tenuta di vapore, assicurati ai bordi e nei punti di giunzione;

- mettere in opera coperture umide sulla superficie in grado di proteggere dall'essiccazione;
- mantenere umida la superficie del calcestruzzo con l'apporto di acqua;
- applicare prodotti specifici (filmogeni antievaporanti) per la protezione delle superfici.

I prodotti filmogeni non possono essere applicati lungo i giunti di costruzione, sulle riprese di getto o sulle superfici che devono essere trattate con altri materiali, a meno che il prodotto non venga completamente rimosso prima delle operazioni o che si sia verificato che non ci siano effetti negativi nei riguardi dei trattamenti successivi, salvo specifica deroga da parte della direzione dei lavori. Per eliminare il film dello strato protettivo dalla superficie del calcestruzzo, si può utilizzare la sabbiatura o l'idropulitura con acqua in pressione. La colorazione del prodotto di curing serve a rendere visibili le superfici trattate. Si devono evitare, nel corso della stagionatura, i ristagni d'acqua sulle superfici che rimarranno a vista.

Nel caso in cui siano richieste particolari caratteristiche per la superficie del calcestruzzo, quali la resistenza all'abrasione o durabilità, è opportuno aumentare il tempo di protezione e maturazione.

- 15. Per le strutture in cemento armato in cui non sono ammesse fessurazioni dovranno essere predisposti i necessari accorgimenti previsti dal progetto esecutivo o impartite dalla direzione dei lavori. Le fessurazioni superficiali dovute al calore che si genera nel calcestruzzo devono essere controllate mantenendo la differenza di temperatura tra il centro e la superficie del getto intorno ai 20 °C.
- 16. In cantiere la maturazione accelerata a vapore del calcestruzzo gettato può ottenersi con vapore alla temperatura di 55-80 °C alla pressione atmosferica. La temperatura massima raggiunta dal calcestruzzo non deve superare i 60 °C e il successivo raffreddamento deve avvenire con gradienti non superiori a 10 °C/h. A titolo orientativo potranno essere eseguite le raccomandazioni del documento ACI 517.2R-80 (Accelerated Curing of Concrete at Atmosferic Pressure).
- 17. Verrà effettuato, infine, il disarmo secondo le modalità riportate nell'articolo relativo alle casseforme.
- 18. Per il calcestruzzo a faccia vista devono essere, inoltre, rispettate le indicazioni di cui al presente comma. Affinché il colore superficiale del calcestruzzo, determinato dalla sottile pellicola di malta che si forma nel getto a contatto con la cassaforma, risulti il più possibile uniforme, il cemento utilizzato in ciascuna opera dovrà provenire dallo stesso cementificio ed essere sempre dello stesso tipo e classe. La sabbia invece dovrà provenire dalla stessa cava e avere granulometria e composizione costante.

Le opere o i costituenti delle opere a faccia a vista, che dovranno avere lo stesso aspetto esteriore, dovranno ricevere lo stesso trattamento di stagionatura. In particolare, si dovrà curare che l'essiccamento della massa del calcestruzzo sia lento e uniforme.

Si dovranno evitare condizioni per le quali si possano formare efflorescenze sul calcestruzzo. Qualora queste apparissero, sarà onere dell'appaltatore eliminarle tempestivamente mediante spazzolatura, senza impiego di acidi.

Le superfici finite e curate - come indicato ai punti precedenti - dovranno essere adeguatamente protette, se le condizioni ambientali e di lavoro saranno tali da poter essere causa di danno in qualsiasi modo alle superfici stesse.

Si dovrà evitare che vengano prodotte sulla superficie finita scalfitture, macchie o altri elementi che ne pregiudichino la durabilità o l'estetica.

Si dovranno evitare inoltre macchie di ruggine dovute alla presenza temporanea dei ferri di ripresa. In tali casi, occorrerà prendere i dovuti provvedimenti, evitando che l'acqua piovana scorra sui ferri e successivamente sulle superfici finite del getto.

Qualsiasi danno o difetto della superficie finita del calcestruzzo dovrà essere eliminato a cura dell'appaltatore, con i provvedimenti preventivamente autorizzati dal direttore dei lavori.

Art. 70 - Disgaggi e demolizioni di massi

- 1. Prima del disgaggio per ogni masso si dovrà procedere alla verifica manuale dell'effettiva instabilità.
- 2. I disgaggi e le demolizioni devono eseguiti con cautela dall'alto verso il basso e con le necessarie precauzioni, in modo tale da prevenire qualsiasi infortunio agli addetti al lavoro.
- 4. Prima di eseguire i disgaggi e/o le demolizioni l'Appaltatore dovrà provvedere alla messa in sicurezza dell'area sottostante.
- 5. Tutti i materiali riutilizzabili, a giudizio insindacabile della direzione dei lavori, devono essere opportunamente puliti, custoditi, trasportati ed ordinati nei luoghi di deposito che verranno indicati dalla

Direzione stessa, usando cautele per non danneggiarli, sia nella pulizia sia nel trasporto sia nell'assestamento, e per evitarne la dispersione.

Detti materiali restano tutti di proprietà della stazione appaltante, la quale potrà ordinare all'Appaltatore di impiegarli in tutto od in parte nei lavori appaltati, ai sensi dell'art. 36 del vigente Cap. Gen. n. 145/00, con i prezzi indicati nell'elenco del presente capitolato.

- 6. I materiali di scarto provenienti da disgaggi e demolizioni devono essere trasportati dall'Appaltatore fuori del cantiere nei punti indicati od alle pubbliche discariche.
- 7. Le demolizioni dovranno limitarsi alle parti ed alle dimensioni prescritte. Quando, anche per mancanza di puntellamenti o di altre precauzioni, venissero demolite altre parti od oltrepassati i limiti fissati, le parti indebitamente demolite saranno ricostruite e rimesse in ripristino a cura e spese dell'Appaltatore, senza alcun compenso.

Art. 71 - Ancoraggi con tirafondi

- 1. Gli ancoraggi con tirafondi sono elementi strutturali connessi al terreno o alla roccia, che in esercizio sono sollecitati a trazione. Le forze di trazione sono quindi applicate sulla struttura da tenere ancorata mediante una piastra di ripartizione (testata). I tiranti vengono distinti in:
 - -tiranti passivi: nei quali la sollecitazione di trazione nasce quale reazione a seguito di una deformazione dell'opera ancorata;
 - -tiranti attivi: nei quali la sollecitazione di trazione è impressa in tutto o in parte all'atto del collegamento con l'opera ancorata.

In relazione alla durata di esercizio i tiranti vengono distinti in:

- -tiranti provvisori: la cui funzione deve essere espletata per un periodo di tempo limitato;
- -tiranti permanenti: la cui funzione deve essere espletata per un periodo di tempo commisurato alla vita utile dell'opera ancorata.

Gli ancoraggi realizzati tramite tirafondi metallici servono per l'ancoraggio di reti e funi paramassi. Nel caso specifico si tratta dio ancoraggi realizzati mediante:

- perforazione della roccia
- inserimento di tirafondo metallico in barra d'acciaio tipo B450C
- iniezione fino a completa satuazione del foro con boiacca di cemento additivata con antiritiro
- piastra in acciaio zincato di contrasto
- golfare passacavo zincato o dato di serraggio

In genere gli ancoraggi agiscono alla superficie della massa rocciosa. Una volta installati, contribuiscono a migliorare le caratteristiche geotecniche globali del versante. Trasmettono gli sforzi ai quali sono sottoposti al terreno che, a sua volta, fornisce la resistenza necessaria per la reazione all'equilibrio.

- 2. La perforazione potrà essere eseguita a rotazione o a rotopercussione, in materie di qualsiasi natura e consistenza, compreso calcestruzzi, murature, trovanti e/o roccia dura, anche in presenza di acqua. Il foro potrà essere eseguito a qualsiasi altezza e l'impresa dovrà provvedere alle eventuali opere provvosionali, rispondenti a tutte le indicazioni di Legge. Il foro dovrà essere rivestito nel caso che il terreno sia rigonfiante o non abbia coesione sufficiente ad assicurare la stabilità delle pareti del foro durante e dopo la posa delle armature; in roccia si rivestirà il foro nei casi in cui: l'alterazione e la fessurazione della roccia siano tali da richiederlo per assicurare la stabilità delle pareti durante e dopo la posa delle armature; la natura della roccia sia tale da far temere la formazione di spigoli aguzzi lungo le pareti del foro, suscettibili di danneggiare le guaine di protezione.
 - Il fluido di perforazione potrà essere acqua, aria, una miscela di entrambi, oppure, unicamente per perforazioni in terreni sciolti, un fango di cemento e bentonite. L'impiego di aria non è consentito in terreni incoerenti sotto falda. Al termine della perforazione si dovrà procedere al lavaggio del foro con acqua o aria. Nel caso coi terreni con prevalente componente argillosa, di rocce marnose tenere e terreni argillosi sovraconsolidati, il lavaggio sarà eseguito con sola aria, evitando l'utilizzo di fluidi di perforazione. Quando sia previsto dal progetto e sia compatibile con la natura dei terreni, si potranno eseguire, mediante l'impiego di appositi utensili allargatori, delle scampanature di diametro noto, regolarmente intervallate lungo la fondazione del tirante. In base alle indicazioni emerse nel corso della esecuzione dei tiranti preliminari di prova e comunque in presenza di falde artesiane e di terreni particolarmente permeabili, 1 I impresa dovrà provvedere a sua cura e spese, a preventive iniezioni di intasamento all'interno del foro con miscele e

modalità approvate dalla Direzione Lavori. Per la circolazione del fluido di perforazione saranno utilizzate pompe a pistoni con portate e pressioni adeguate. Si richiedono valori minimi di 200 l/min e 25 bar, rispettivamente.

- 3. Le tolleranze ammesse nella realizzazione dei fori sono le seguenti: il diametro dell'utensile di perforazione dovrà risultare non inferiore al diametro di progetto e non superiore del 10% di tale diametro; la lunghezza totale di perforazione dovrà risultare conforme al progetto; la variazione di inclinazione e di direzione azimutale non dovrà essere maggiore di ±2°; la posizione della testa foro non dovrà discostarsi più di lo cm dalla posizione di progetto.
- 4. Completata la perforazione si deve provvedere a rimuovere i detriti nel foro, o in sospensione nel fluido di perforazione, prolungando la circolazione del fluido stesso fino alla sua completa circolazione.
- 5. Ultimata la rimozione dei detriti si deve provvedere ad effettuare le operazioni che seguono:
 - -riempimento del foro con miscela cementizia additivata con antiritiro;
 - -introduzione del tirante, barra in acciaio B450C zincata rispondente alla norma EN 10264/2;
 - -asciugatura e maturazione della miscela cementizia

Per la cementazione di prima fase, se necessaria, si utilizzerà un volume di miscela cementizia commisurato al volume teorico del foro. In questa fase si eseguiranno anche le operazioni di riempimento del sacco otturatore, ove presente, e del bulbo interno per i tiranti definitivi, utilizzando quantitativi di miscela corrispondenti ai volumi teorici degli stessi. Completata l'iniezione di 1[^] fase si provvederà a lavare con acqua il cavo interno del tubo di iniezione.

Trascorso un periodo di 12 ÷ 24 ore dalla formazione della guaina, si darà luogo alla esecuzione delle iniezioni selettive per la formazione del bulbo di ancoraggio.

Trascorsi ventotto giorni dall'ultima iniezione, o meno, secondo il tipo di miscela, ogni tirante verrà sottoposto a tesatura di collaudo. L'inizio delle operazioni di tesatura e collaudo dovrà essere comunque autorizzato dalla Direzione Lavori.

La trazione di collaudo (Nc) è pari a 1,2 volte la trazione massima di esercizio (Nes).

La protezione anticorrosiva del tratto libero del tirante sarà completata iniettando all'interno della guaina la miscela utilizzata nelle operazioni di iniezione dopo il completamento delle operazioni di tesatura del tirante.

La protezione della testa del tirante potrà essere ottenuta, nei casi in cui è prescritta la protezione di classe 1, con un getto della miscela indicata previa aggiunta di additivi antiritiro, mentre nel caso si debba realizzare una protezione di classe 2, si provvederà all'incapsulamento della testa mediante involucri protettivi di polietilene o polipropilene di spessore minimo pari a 2 mm che verranno connessi per saldatura alla guaina che avvolge il tratto libero; successivamente, con un getto di miscela cementizia, armata con rete, si proteggerà ulteriormente la testa dagli urti e dalle abrasioni.

Art. 72 - Tiranti con funi in trefoli di acciaio

- 1. I tiranti sono elementi strutturali connessi al terreno o alla roccia, che in esercizio sono sollecitati a trazione. Le forze di trazione sono quindi applicate sulla struttura da tenere ancorata mediante una piastra di ripartizione (testata). I tiranti vengono distinti in:
 - -tiranti passivi: nei quali la sollecitazione di trazione nasce quale reazione a seguito di una deformazione dell'opera ancorata;
 - -tiranti attivi: nei quali la sollecitazione di trazione è impressa in tutto o in parte all'atto del collegamento con l'opera ancorata.
 - In relazione alla durata di esercizio i tiranti vengono distinti in:
 - -tiranti provvisori: la cui funzione deve essere espletata per un periodo di tempo limitato;
 - -tiranti permanenti: la cui funzione deve essere espletata per un periodo di tempo commisurato alla vita utile dell'opera ancorata.
- 2. La perforazione potrà essere eseguita a rotazione o a rotopercussione, in materie di qualsiasi natura e consistenza, compreso calcestruzzi, murature, trovanti e/o roccia dura, anche in presenza di acqua. Il foro potrà essere eseguito a qualsiasi altezza e l'impresa dovrà provvedere ad eseguire idonei ponteggi ed impalcature, rispondenti a tutte le indicazioni di Legge. Il foro dovrà essere rivestito nel caso che il terreno sia rigonfiante o non abbia coesione sufficiente ad assicurare la stabilità delle pareti del foro durante e dopo la posa delle armature; in roccia si rivestirà il foro nei casi in cui: l'alterazione e la fessurazione della roccia

siano tali da richiederlo per assicurare la stabilità delle pareti durante e dopo la posa delle armature; la natura della roccia sia tale da far temere la formazione di spigoli aguzzi lungo le pareti del foro, suscettibili di danneggiare le guaine di protezione.

Il fluido di perforazione potrà essere acqua, aria, una miscela di entrambi, oppure, unicamente per perforazioni in terreni sciolti, un fango di cemento e bentonite. L'impiego di aria non è consentito in terreni incoerenti sotto falda. Al termine della perforazione si dovrà procedere al lavaggio del foro con acqua o aria. Nel caso coi terreni con prevalente componente argillosa, di rocce marnose tenere e terreni argillosi sovraconsolidati, il lavaggio sarà eseguito con sola aria, evitando l'utilizzo di fluidi di perforazione. Quando sia previsto dal progetto e sia compatibile con la natura dei terreni, si potranno eseguire, mediante l'impiego di appositi utensili allargatori, delle scampanature di diametro noto, regolarmente intervallate lungo la fondazione del tirante. In base alle indicazioni emerse nel corso della esecuzione dei tiranti preliminari di prova e comunque in presenza di falde artesiane e di terreni particolarmente permeabili, 1 i impresa dovrà provvedere a sua cura e spese, a preventive iniezioni di intasamento all'interno del foro con miscele e modalità approvate dalla Direzione Lavori. Per la circolazione del fluido di perforazione saranno utilizzate pompe a pistoni con portate e pressioni adeguate. Si richiedono valori minimi di 200 l/min e 25 bar, rispettivamente. Nel caso di perforazione a roto-percussione con martello a fondo foro si utilizzeranno compressori di adeguata potenza; le caratteristiche minime richieste sono: portata ≥ 10 m 3 /min; pressione ≥ 8 bar.

- 3. Le tolleranze ammesse nella realizzazione dei fori sono le seguenti: il diametro dell'utensile di perforazione dovrà risultare non inferiore al diametro di progetto e non superiore del 10% di tale diametro; la lunghezza totale di perforazione dovrà risultare conforme al progetto; la variazione di inclinazione e di direzione azimutale non dovrà essere maggiore di ±2°; la posizione della testa foro non dovrà discostarsi più di lo cm dalla posizione di progetto.
- 4. Completata la perforazione si deve provvedere a rimuovere i detriti nel foro, o in sospensione nel fluido di perforazione, prolungando la circolazione del fluido stesso fino alla sua completa circolazione.
- 5. Ultimata la rimozione dei detriti si deve provvedere ad effettuare le operazioni che seguono:
 - -riempimento del foro con miscela cementizia (cementazione di 1[^] fase), se necessaria;
 - -introduzione del tirante (l'armatura può essere di tipo a barre, a fili o a trefoli);
 - -riempimento dei dispositivi di separazione e protezione interni (sacco otturatore, bulbo interno);
 - -esecuzione delle iniezioni selettive a pressioni e volume controllati;
 - -posizionamento della testata e dei dispositivi di tensionamento;
 - -prove di carico di collaudo;
 - -tensionamento del tirante;
 - -protezione della parte libera;
 - -protezione della testata.

Per la cementazione di prima fase, se necessaria, si utilizzerà un volume di miscela cementizia commisurato al volume teorico del foro. In questa fase si eseguiranno anche le operazioni di riempimento del sacco otturatore, ove presente, e del bulbo interno per i tiranti definitivi, utilizzando quantitativi di miscela corrispondenti ai volumi teorici degli stessi. Completata l'iniezione di 1[^] fase si provvederà a lavare con acqua il cavo interno del tubo di iniezione.

Trascorso un periodo di 12 ÷ 24 ore dalla formazione della guaina, si darà luogo alla esecuzione delle iniezioni selettive per la formazione del bulbo di ancoraggio.

Trascorsi ventotto giorni dall'ultima iniezione, o meno, secondo il tipo di miscela, ogni tirante verrà sottoposto a tesatura di collaudo. L'inizio delle operazioni di tesatura e collaudo dovrà essere comunque autorizzato dalla Direzione Lavori.

La trazione di collaudo (Nc) è pari a 1,2 volte la trazione massima di esercizio (Nes).

La protezione anticorrosiva del tratto libero del tirante sarà completata iniettando all'interno della guaina la miscela utilizzata nelle operazioni di iniezione dopo il completamento delle operazioni di tesatura del tirante.

La protezione della testa del tirante potrà essere ottenuta, nei casi in cui è prescritta la protezione di classe 1, con un getto della miscela indicata previa aggiunta di additivi antiritiro, mentre nel caso si debba realizzare una protezione di classe 2, si provvederà all'incapsulamento della testa mediante involucri protettivi di polietilene o polipropilene di spessore minimo pari a 2 mm che verranno connessi per saldatura alla guaina

che avvolge il tratto libero; successivamente, con un getto di miscela cementizia, armata con rete, si proteggerà ulteriormente la testa dagli urti e dalle abrasioni.

Art. 73 - Geocomposito metallico per rivestimento pareti rocciose

- 1. Per la denominazione della maglia tipo, le dimensioni e le relative tolleranze, si può fare riferimento alle specifiche della norma UNI EN 10223-3.
- 2. Le combinazioni-tipo tra le dimensioni "D" della maglia e il diametro del filo "d" con cui questa è costituita generalmente esagonale tipo 8x10.
- 3. Per ciascuna applicazione la combinazione tra diametro delle maglia "D" e quello del filo "d" deve essere comunque univocamente individuata e il diametro del filo non può essere indicato come "superiore a" o "non inferiore a" o messo in alternativa tra due o più valori.
- 4. Il filo di bordatura laterale di tratti di rete e di quello dei singoli elementi di strutture scatolari (gabbioni e materassi metallici) deve avere un diametro maggiore di quello costituente la rete stessa, secondo quanto riportato dalla norma UNI EN 10223-3 e di seguito richiamato.
- 5. Il valore della resistenza a trazione della rete metallica assume valori differenti in funzione delle diverse combinazioni tra dimensioni della maglia e diametro del filo.
- 6. Ai valori di resistenza caratteristica a trazione devono essere associati valori di "rigidezza" per le applicazioni in cui le prestazioni dipendono dalla deformabilità delle rete, quali in particolare reti paramassi e per i rinforzi di rilevati strutturali in terra armata.
- 7. Fissata alla sommità ed al piede della parete rocciosa alla predisposta struttura di contenimento (ancoraggi e funi da compensare a parte), mediante l'applicazione di grilli ad alta resistenza e protezione dalla corrosione conforme a UNI EN ISO 1461. La stessa tipologia di grilli sarà utilizzata per connettere fra di loro i rotoli adiacenti, sfruttando i vertici delle maglie del reticolo.
- 8. Gli ancoraggi saranno dotati di piastra di ripartizione in acciaio S235JR (EN 10025-2).
- 9. Prima della messa in opera e per ogni partita ricevuta in cantiere, l'Appaltatore dovrà consegnare alla D.L. la relativa Dichiarazione di Prestazione (DoP) rilasciata in originale, in cui specifica il nome del prodotto, la Ditta produttrice, le quantità fornite e la destinazione. La conformità dei prodotti dovrà essere certificata da un organismo notificato ai sensi della CPD 89/106 CEE o del CPR 305/2011, terzo ed indipendente, tramite certificato del controllo del processo di fabbrica CE. Il Sistema Qualità della ditta produttrice dovrà essere inoltre certificato in accordo alla ISO 9001:2015 da un organismo terzo indipendente.

Art. 74 - Scavi di sbancamento

- 1. Per scavo di sbancamento si intende quello praticato al di sopra del piano orizzontale passante per il punto più depresso del terreno ed aperto almeno da un lato.
 - Ancora per scavi di sbancamento o sterri andanti s'intendono quelli occorrenti per lo spianamento o sistemazione del terreno su cui dovranno sorgere le costruzioni, per tagli di terrapieni, per la formazione di cortili, giardini, scantinati, piani di appoggio per platee di fondazione, vespai, rampe incassate o trincee stradali, ecc., e in generale tutti quelli eseguiti a sezione aperta su vasta superficie.
- 2. Gli scavi in genere per qualsiasi lavoro, a mano o con mezzi meccanici, dovranno essere eseguiti secondo i disegni di progetto e la relazione geologica e geotecnica di cui al D.M. 17/01/2018, nonché secondo le particolari prescrizioni che saranno date all'atto esecutivo dalla direzione dei lavori. Nell'esecuzione degli scavi in genere l'Appaltatore dovrà procedere in modo da impedire scoscendimenti e franamenti, restando esso, oltreché totalmente responsabile di eventuali danni alle persone e alle opere, altresì obbligato a provvedere a suo carico e spese alla rimozione delle materie franate. L'Appaltatore dovrà, altresì, provvedere a sue spese affinché le acque scorrenti alla superficie del terreno siano deviate in modo che non abbiano a riversarsi nei cavi.
- 3. Le materie provenienti dagli scavi, ove non siano utilizzabili o non ritenute adatte (a giudizio insindacabile della direzione dei lavori), ad altro impiego nei lavori, dovranno essere portate fuori della sede del cantiere,

- alle pubbliche discariche ovvero su aree che l'Appaltatore dovrà provvedere a rendere disponibili a sua cura e spese.
- 4. Qualora le materie provenienti dagli scavi debbano essere successivamente utilizzate, esse dovranno essere depositate, previo assenso della direzione dei lavori, per essere poi riprese a tempo opportuno. In ogni caso le materie depositate non dovranno essere di danno ai lavori, alle proprietà pubbliche o private ed al libero deflusso delle acque scorrenti alla superficie.

Art. 75 - Fondazione stradale in misto granulare

- 1. La sovrastruttura stradale è costituita da:
 - strato superficiale;
 - strato di base;
 - strato di fondazione.
 - Lo strato di fondazione, dunque, è lo strato della parte inferiore della sovrastruttura a contatto con il terreno di appoggio (sottofondo).
- 2. Prima di eseguire lo strato di fondazione, occorre accertarsi delle condizioni del sottofondo.
 - Sottofondo con portanza insufficiente e/o con notevole sensibilità all'azione dell'acqua e del gelo deve essere, infatti, migliorato o stabilizzato con appositi interventi, ovvero sostituito per una certa profondità. Il sottofondo viene detto migliorato quando viene integrato con materiale arido (correzione granulometrica) o quando viene trattato con modesti quantitativi di legante, tali da modificare, anche temporaneamente, le sole proprietà fisiche della terra (quali il contenuto naturale di acqua, la plasticità, la costipabilità, il CBR). In alcuni casi, il miglioramento può essere ottenuto mediante opere di drenaggio, ovvero con l'ausilio di geosintetici.
 - Il sottofondo viene detto stabilizzato quando il legante è in quantità tale da conferire alla terra una resistenza durevole, apprezzabile mediante prove di trazione e flessione proprie dei materiali solidi. Il legante impiegato è normalmente di tipo idraulico o idrocarburico.
- 3. Lo strato di fondazione sarà realizzato con misto granulare. Per quanto concerne la modalità di posa, il materiale va steso in strati di spessore finito non superiore a 25 cm e non inferiore a 10 cm e deve presentarsi, dopo costipamento, uniformemente miscelato, in modo da non presentare segregazione dei suoi componenti. L'eventuale aggiunta di acqua, per raggiungere l'umidità prescritta in funzione della densità, è da effettuarsi mediante dispositivi spruzzatori. La stesa va effettuata con finitrice o con grader appositamente equipaggiato.
 - Il materiale pronto per il costipamento deve presentare in ogni punto la prescritta granulometria.
 - Il costipamento di ciascuno strato deve essere eseguito sino a ottenere una densità in situ non inferiore al 98% della densità massima fornita dalla prova aasho modificata.
 - Per il costipamento e la rifinitura dovranno impiegarsi rulli vibranti o vibranti gommati, tutti semoventi.
- 4. Le operazioni di cui al comma 3 non devono essere eseguite quando le condizioni ambientali (pioggia, neve, gelo) siano tali da danneggiare la qualità dello strato stabilizzato.
 - Verificandosi comunque un eccesso di umidità o danni dovuti al gelo, lo strato compromesso dovrà essere rimosso e ricostituito a cura e spese dell'impresa. L'idoneità dei rulli e le modalità di costipamento per ogni cantiere verranno accertate dalla direzione dei lavori con una prova sperimentale, usando le miscele messe a punto per quel cantiere.
- 5. La superficie finita non dovrà scostarsi dalla sagoma di progetto di oltre 1 cm, controllato a mezzo di un regolo di 4-4,50 m di lunghezza e disposto secondo due direzioni ortogonali. Lo spessore dovrà essere quello prescritto, con una tolleranza in più o in meno del 5%, purché questa differenza si presenti solo saltuariamente. In caso contrario, l'impresa, a sua cura e spese, dovrà provvedere al raggiungimento dello spessore prescritto.

Art. 76 - Pavimentazione stradale con bitumi

- 1. In riferimento alle istruzioni del C.N.R. b.u. n. 169/1994, si riportano le definizioni di cui ai paragrafi seguenti. Le parti del corpo stradale più direttamente interessate dai carichi mobili si possono distinguere essenzialmente in:
 - sovrastruttura;

- sottofondo.

Con il termine sovrastruttura si indica la parte del corpo stradale costituita da un insieme di strati sovrapposti, di materiali e di spessori diversi, aventi la funzione di sopportare complessivamente le azioni dal traffico e di trasmetterle e distribuirle, opportunamente attenuate, al terreno d'appoggio (sottofondo) o ad altre idonee strutture.

- 2. Nella sovrastruttura normalmente sono presenti e si distinguono i seguenti strati:
 - strato superficiale;
 - strato di base;
 - strato di fondazione.

Oggetto del presente articolo sono lo strato superficiale e quello di base.

Lo strato superficiale è lo strato immediatamente sottostante al piano viabile. Nelle sovrastrutture flessibili esso viene suddiviso in due strati:

- strato di usura;
- strato di collegamento (binder).

Lo strato di usura è lo strato disposto a immediato contatto con le ruote dei veicoli, destinato ad assicurare adeguate caratteristiche di regolarità e condizioni di buona aderenza dei veicoli alla superficie di rotolamento, a resistere prevalentemente alle azioni tangenziali di abrasione, nonché a proteggere gli strati inferiori dalle infiltrazioni delle acque superficiali.

Lo strato di collegamento è lo strato, spesso chiamato binder, sottostante al precedente, destinato a integrarne le funzioni portanti e ad assicurarne la collaborazione con gli strati inferiori. Normalmente è costituito da materiale meno pregiato e quindi più economico del sovrastante.

Lo strato di base è lo strato intermedio tra lo strato superficiale e il sottostante strato di fondazione

- 3. La miscela bituminosa dello strato di base verrà stesa dopo che sia stata accertata dalla direzione dei lavori la rispondenza della fondazione ai requisiti di quota, sagoma, densità e portanza indicati in progetto.
 - Prima della stesa del conglomerato bituminoso su strati di fondazione in misto cementato deve essere rimossa, per garantirne l'ancoraggio, la sabbia eventualmente non trattenuta dall'emulsione stesa precedentemente a protezione del misto cementato stesso. Nel caso di stesa in doppio strato, la sovrapposizione degli strati deve essere realizzata nel più breve tempo possibile. Qualora la seconda stesa non sia realizzata entro le 24 ore successive tra i due strati, deve essere interposta una mano di attacco di emulsione bituminosa in ragione di 0,3 kg/m2 di bitume residuo.
 - La miscela bituminosa del binder e del tappeto di usura verrà stesa sul piano finito dello strato sottostante dopo che sia stata accertata dalla direzione dei lavori la rispondenza di quest'ultimo ai requisiti di quota, sagoma, densità e portanza indicati in progetto.
- 4. La posa in opera dei conglomerati bituminosi verrà effettuata a mezzo di macchine vibrofinitrici in perfetto stato di efficienza e dotate di automatismi di autolivellamento.
 - Le vibrofinitrici devono comunque lasciare uno strato finito perfettamente sagomato, privo di sgranamenti e fessurazioni, ed esente da difetti dovuti a segregazione degli elementi litoidi più grossi.
 - Nella stesa si deve porre la massima cura alla formazione dei giunti longitudinali, preferibilmente ottenuti mediante tempestivo affiancamento di una strisciata alla precedente.
 - Qualora ciò non sia possibile, il bordo della striscia già realizzata deve essere spalmato con emulsione bituminosa cationica, per assicurare la saldatura della striscia successiva.
 - Se il bordo risulterà danneggiato o arrotondato, si deve procedere al taglio verticale con idonea attrezzatura. I giunti trasversali derivanti dalle interruzioni giornaliere devono essere realizzati sempre previo taglio e asportazione della parte terminale di azzeramento.

La sovrapposizione dei giunti longitudinali tra i vari strati deve essere programmata e realizzata in maniera che essi risultino sfalsati fra di loro di almeno 20 cm e non cadano mai in corrispondenza delle due fasce della corsia di marcia normalmente interessata dalle ruote dei veicoli pesanti.

La temperatura del conglomerato bituminoso all'atto della stesa, controllata immediatamente dietro la finitrice, deve risultare in ogni momento non inferiore a 140 °C.

La stesa dei conglomerati deve essere sospesa qualora le condizioni meteorologiche generali possano pregiudicare la perfetta riuscita del lavoro.

Gli strati eventualmente compromessi devono essere immediatamente rimossi e successivamente ricostruiti a spese dell'impresa.

- La compattazione dei conglomerati deve iniziare appena stesi dalla vibrofinitrice e condotta a termine senza interruzioni.
- 5. L'addensamento di ogni strato deve essere realizzato preferibilmente con rulli gommati.
 - Per gli strati di base e di binder possono essere utilizzati anche rulli con ruote metalliche vibranti e/o combinati, di peso idoneo e caratteristiche tecnologiche avanzate, in modo da assicurare il raggiungimento delle massime densità ottenibili.
 - La compattazione dovrà avvenire garantendo un addensamento uniforme in ogni punto, in modo tale da evitare fessurazioni e scorrimenti nello strato appena steso.
 - La superficie degli strati deve presentarsi, dopo la compattazione, priva di irregolarità e di ondulazioni. Un'asta rettilinea lunga 4 m, posta in qualunque direzione sulla superficie finita di ciascuno strato, deve aderirvi uniformemente; può essere tollerato uno scostamento massimo di 5 mm.

Art. 77 - Cordoni

- 1. Le cordonature per la delimitazione dei marciapiedi dovranno essere in conglomerato cementizio vibrato, avente $R_{Ck} \ge 30$ MPa, in elementi di lunghezza $60 \div 100$ m, di forma prismatica e della sezione indicata nel progetto esecutivo. Gli elementi non dovranno presentare imperfezioni, cavillature, rotture o sbrecciature. Dovranno avere superfici in vista regolari e ben rifinite. Lo spigolo della cordonatura verso la strada deve essere arrotondato e/o smussato.
- 2. I cordoli possono essere realizzati direttamente in opera, mediante estrusione da idonea cordolatrice meccanica, e potranno essere realizzati in conglomerato sia bituminoso che cementizio, tipo II, con Rck = 30 MPa, previa mano di ancoraggio con emulsione bituminosa. I cordoli in calcestruzzo saranno finiti dopo maturazione con una mano di emulsione bituminosa.
- 3. Nel caso di impiego di elementi prefabbricati, ogni partita dovrà essere accompagnata dai corrispondenti certificati attestanti la qualità dei materiali utilizzati per la loro realizzazione, nonché dalle certificazioni attestanti le dimensioni dell'elemento. Ciascuna partita di 100 elementi prefabbricati non potrà essere posta in opera fino a quando non saranno noti i risultati positivi della resistenza del conglomerato costituente la partita, mediante il prelievo di quattro provini. Nel caso che la resistenza sia inferiore a 30 MPa, la partita sarà rifiutata e dovrà essere allontanata dal cantiere.
- 4. Gli elementi devono essere posti in opera su platea in conglomerato cementizio del tipo di fondazione avente $R_{ck} \ge 25$ MPa, interponendo uno strato di malta dosata a 400 kg/m³ di cemento, che verrà utilizzata anche per la stuccatura degli elementi di cordonatura. Il piano superiore presenterà una pendenza del 2% verso l'esterno.

Art. 78 - Opere in ferro

- 1. Per realizzare le opere in ferro, l'Appaltatore dovrà senza compenso esibire i disegni particolareggiati ed i relativi campioni da sottoporre alla approvazione della Direzione Lavori.
- 2. La lavorazione dovrà essere accurata ed eseguita a perfetta regola d'arte specie per quanto concerne le saldature, i giunti, le forgiature, ecc.
 - Saranno rifiutate tutte quelle opere, o parte di esse, che presentassero il più leggero indizio di imperfezione.
- 3. Ogni opera in ferro dovrà essere fornita previ procedimenti di verniciatura a due mani di antiruggine a seconda delle caratteristiche dell'opera stessa.
- 4. Le opere in ferro saranno munite di tutte le guarnizioni chiudenti e congegni necessari per il loro funzionamento come cariglioni, crichetti a molla, catenelle e leve, catenacciuoli di ferro ecc. nonché serrature a chiave ed a cricca, ove occorrano, e di tutti gli accessori, con zanche, mazzette o simili occorrenti per la posa.
- 5. A posa ultimata si dovrà provvedere alla revisione e piccole riparazioni che dovessero rendersi necessarie.

Art. 79 - Barriere di sicurezza

1. Si definiscono barriere stradali di sicurezza i dispositivi aventi lo scopo di realizzare il contenimento dei veicoli che dovessero tendere alla fuoriuscita dalla carreggiata stradale, nelle migliori condizioni di sicurezza possibili.

Non possono essere aperte al traffico le strade per le quali non siano state realizzate le protezioni previste nel progetto approvato.

Per le caratteristiche tecniche di accettazione e collocazione delle barriere stradali di sicurezza si deve fare riferimento alle norme vigenti, tra cui:

C.M. 11 luglio 1987, n. 2337 - Fornitura e posa in opera di beni inerenti la sicurezza della circolazione stradale;

D.M. 4 maggio 1990 - Aggiornamento delle norme tecniche per la progettazione, esecuzione e collaudo dei ponti stradali;

C.M. 25 febbraio 1991, n. 34233 - Legge 2 febbraio 1974, n. 64. Art. 1, D.M. 4 maggio 1990. Istruzioni relative alla normativa tecnica dei ponti stradali;

D.M. 18 febbraio 1992, n. 223 - Regolamento recante istruzioni tecniche per la progettazione, l'omologazione e l'impiego delle barriere stradali di sicurezza;

C.M. 9 giugno 1995, n. 2595 - Barriere stradali di sicurezza. D.M. 18 febbraio 1992, n. 223;

C.ANAS 26 luglio 1996, n. 749/1996 - Fornitura e posa di beni inerenti la sicurezza della circolazione stradale; D.M. 15 ottobre 1996 - Aggiornamento del D.M. 18 febbraio 1992, n. 223, recante istruzioni tecniche per la progettazione, l'omologazione e l'impiego delle barriere stradali di sicurezza;

C.M. 16 maggio 1996, n. 2357 - Fornitura e posa in opera di beni inerenti la sicurezza della circolazione stradale;

C.M. 15 ottobre 1996. n. 4622 - Istituti autorizzati all'esecuzione di prove d'impatto in scala reale su barriere stradali di sicurezza;

D.M. LL.PP. 15 ottobre 1996 - Aggiornamento del decreto ministeriale 18 febbraio 1992, n. 223, recante istruzioni per la progettazione, l'omologazione e l'impiego delle barriere stradali di sicurezza;

Circ. Ente Nazionale per le strade Prot. 05 dicembre 1997, n. 17600 - Progettazione, omologazione e impiego delle barriere stradali di sicurezza;

D.M. 3 giugno 1998 - Ulteriore aggiornamento delle istruzioni tecniche per la progettazione, l'omologazione e l'impiego delle barriere stradali di sicurezza e delle prescrizioni tecniche per le prove ai fini dell'omologazione;

D.M. LL.PP. 11 giugno 1999 - Integrazioni e modificazioni al decreto ministeriale 3 giugno 1998, recante "Aggiornamento delle istruzioni tecniche per la progettazione, l'omologazione e l'impiego delle barriere stradali di sicurezza";

C.M. 6 aprile 2.000 - Art. 9 del decreto ministeriale 18 febbraio 1992, n. 223, e successive modificazioni: Aggiornamento della circolare recante l'elenco degli istituti autorizzati alle prove di impatto al vero ai fini dell'omologazione;

Det. 24 maggio 2001, n. 13 - Appalti per opere protettive di sicurezza stradale (barriere stradali di sicurezza); D.M. 5 novembre 2001 - Norme funzionali e geometriche per la costruzione delle strade;

C.M. 4 luglio 2002, n. 1173 - Comunicazione dell'avvenuta omologazione di tre barriere stradali di sicurezza per la classe H4, destinazione "spartitraffico" ai sensi dell'art. 9 del decreto ministeriale 18 febbraio 1992, n. 223;

D.M. 17 gennaio 2018 - Nuove norme tecniche per le costruzioni.

Le norme UNI di riferimento sono:

UNI EN 1317-1 - Barriere di sicurezza stradali. Terminologia e criteri generali per i metodi di prova;

UNI EN 1317-2 - Barriere di sicurezza stradali. Classi di prestazione, criteri di accettazione delle prove d'urto e metodi di prova per le barriere di sicurezza;

UNI EN 1317-3 - Barriere di sicurezza stradali. Classi di prestazione, criteri di accettabilità basati sulla prova di impatto e metodi di prova per attenuatori d'urto;

UNI ENV 1317-4 - Barriere di sicurezza stradali. Classi di prestazione, criteri di accettazione per la prova d'urto e metodi di prova per terminali e transizioni delle barriere di sicurezza;

UNI EN 1317-5 - Barriere di sicurezza stradali. Parte 5: Requisiti di prodotto e valutazione di conformità per sistemi di trattenimento veicoli.

2. Le zone, ai margini della carreggiata stradale, da proteggere mediante l'installazione di barriere, sono quelle previste dall'art. 3 delle istruzioni tecniche allegate al D.M. 3 giugno 1998.

Al fine di elevare il livello di servizio delle strade e autostrade statali e la qualità delle pertinenze stradali, di garantire le migliori condizioni di sicurezza per gli utenti della strada e per i terzi, di assicurare le protezione delle zone limitrofe della carreggiata stradale e di impedirne la fuoriuscita dei veicoli, le barriere stradali di

sicurezza dovranno essere progettate e realizzate a norma delle seguenti disposizioni e istruzioni e ai relativi aggiornamenti.

Il livello di contenimento Lc e l'indice di severità dell'accelerazione ASI previsti per verificare l'efficienza e la funzionalità delle barriere stradali di sicurezza (D.M. 3 giugno 1998) dovrà essere comprovato, in attesa delle omologazione ufficiali pronunciate dal succitato decreto, con certificazioni di prove d'impatto al vero (crash-test) eseguite presso i laboratori ufficiali di cui all'art. 59 del D.P.R. n. 380/2001.

Dette prove saranno eseguite con le modalità tecniche esecutive richiamate nel D.M. 3 giugno 1998 e successive modifiche e integrazioni.

Nel caso di barriere stradali di sicurezza da istallare su ponti (viadotti, sottovia o cavalcavia, sovrappassi, sottopassi, strade sopraelevate, ecc.) si dovranno adottare, oltre alle disposizioni tecniche sopraelencate, anche le norme previste dal D.M. 14 gennaio 2008.

I parapetti su opere d'arte stradali (ponti, viadotti, sottovia o cavalcavia, muri di sostegno, ecc.) verranno installati in corrispondenza dei cigli dei manufatti.

Le barriere e i parapetti devono avere caratteristiche tali da resistere a urti di veicoli e da presentare una deformabilità pressoché costante in qualsiasi punto.

Devono, inoltre, assicurare il contenimento dei veicoli collidenti sulla barriera (e tendenti alla fuoriuscita dalla carreggiata stradale) nelle migliori condizioni di sicurezza possibile.

Per gli altri tipi di barriere di sicurezza, che dovranno essere realizzate secondo le istruzioni tecniche previste dal D.M. 3 giugno 1998 e successive modifiche e integrazioni e a norma delle disposizioni e istruzioni sopraelencate, il progetto esecutivo indicherà e prescriverà, tra l'altro, le caratteristiche specifiche costruttive, la loro tipologia strutturale e i materiali da impiegare nel rispetto delle norme tecniche vigenti. La direzione dei lavori potrà ordinare tutti gli accorgimenti esecutivi per assicurare un'adeguata collocazione dei sostegni in terreni di scarsa consistenza, prevedendone anche l'infittimento locale.

In casi speciali, con l'autorizzazione scritta della direzione dei lavori, i sostegni potranno essere ancorati al terreno per mezzo di un idoneo basamento in calcestruzzo.

Le strutture da collocare nell'aiuola spartitraffico saranno costituite da una o due file di barriere ancorate ai sostegni.

Restano ferme per tali barriere tutte le caratteristiche fissate per le barriere laterali, con l'avvertenza di adottare particolare cura per i pezzi terminali di chiusura e di collegamento delle due fasce.

A interasse non superiore a quello corrispondente a tre fasce, dovrà essere eseguita l'installazione di dispositivi rifrangenti del tipo omologato, aventi area non inferiore a 50 cm², disposti in modo che le loro superfici risultino pressoché normali all'asse stradale.

3. La barriera sarà costituita da una serie di sostegni in profilato metallico e da una fascia orizzontale metallica, con l'interposizione di opportuni elementi distanziatori.

Le fasce dovranno essere fissate ai sostegni, in modo che il loro bordo superiore si trovi a una altezza non inferiore a 70 cm dalla pavimentazione finita e che il loro filo esterno abbia aggetto non inferiore a 15 cm dalla faccia del sostegno lato strada.

Le fasce saranno costituite da nastri metallici aventi spessore minimo di 3 mm, profilo a doppia onda, altezza effettiva non inferiore a 300 mm, sviluppo non inferiore a 475 mm e modulo di resistenza non inferiore a 25 cm3.

Le fasce dovranno essere collocate in opera con una sovrapposizione non inferiore a 32 cm.

I sostegni della barriera saranno costituiti da profilati metallici, con profilo a C, di dimensioni non inferiori a 80 mm 2 120 mm 2 80 mm, aventi spessore non inferiore a 6 mm, lunghezza non inferiore a 1,65 m per le barriere centrali e a 1,95 m per quelle laterali.

I sostegni stessi dovranno essere infissi in terreni di normale portanza per una profondità non minore di 0,95 m per le barriere centrali e di 1,20 m per le barriere laterali e posti a un intervallo non superiore a 3,60 m.

La direzione dei lavori potrà ordinare una maggiore profondità o altri accorgimenti esecutivi per assicurare un adeguato ancoraggio del sostegno in terreni di scarsa consistenza, così come potrà variare l'interasse dei sostegni.

In casi speciali, quali zone rocciose o altro, previa approvazione della direzione dei lavori, i sostegni potranno essere ancorati al terreno a mezzo di basamento in calcestruzzo, avente almeno un $Rck = 25 \text{ N/mm}^2$ e delle dimensioni fissate dal progetto.

Le giunzioni, che dovranno avere il loro asse in corrispondenza dei sostegni, devono essere ottenute con sovrapposizione di due nastri per non meno di 32 cm, effettuata in modo tale che, nel senso di marcia dei veicoli, la fascia che precede sia sovrapposta a quella che segue.

Il collegamento delle fasce tra loro e i loro sostegni, con l'interposizione dei distanziatori metallici, deve assicurare, per quanto possibile, il funzionamento della barriera a trave continua e i sistemi di attacco (bulloni e piastrine copriasola) devono impedire che, per effetto dell'allargamento dei fori, possa verificarsi lo sfilamento delle fasce.

I distanziatori avranno altezza di 30 cm, profondità non inferiore a 15 cm e spessore minimo di 2,5 m, salvo l'adozione, in casi speciali, di distanziatori del tipo europeo.

I sistemi di attacco saranno costituiti da bulloneria a testa tonda ad alta resistenza e piastrina copriasola antisfilamento di dimensioni 45 mm 🛭 100 mm e di spessore 4 mm.

Tutti gli elementi metallici costituenti la barriera devono essere in acciaio di qualità non inferiore a Fe 360, zincato a caldo con una quantità di zinco non inferiore a 300 g/m^2 per ciascuna faccia e nel rispetto della normativa UNI 5744/66.

I sistemi di collegamento delle fasce ai sostegni devono consentire la ripresa dell'allineamento sia durante la posa in opera sia in caso di cedimenti del terreno, consentendo un movimento verticale di più o meno 2 cm e un movimento orizzontale di più o meno 1 cm.

Le fasce e i sistemi di collegamento ai sostegni dovranno consentire l'installazione delle barriere lungo curve di raggio non inferiore a 50 m, senza ricorrere a pezzi o sagomature speciali.

Ogni tratto sarà completato con pezzi terminali curvi, opportunamente sagomati, in materiale del tutto analogo a quello usato per le fasce.

Le barriere da collocare nelle aiuole spartitraffico saranno costituite da una doppia fila di barriere del tipo avanti descritto, aventi i sostegni ricadenti in coincidenza delle stesse sezioni trasversali.

Restano ferme per tali barriere tutte le caratteristiche fissate per le barriere laterali, con l'avvertenza di adottare particolare cura per i pezzi terminali di chiusura e di collegamento delle due fasce, che dovranno essere sagomate secondo forma circolare che sarà approvata dalla direzione dei lavori.

A tal proposito, si fa presente che potrà essere richiesta dalla direzione dei lavori anche una diversa sistemazione (interramento delle testate).

Le sopraccitate caratteristiche e modalità di posa in opera minime sono riferite a quelle destinazioni che non prevedono il contenimento categorico dei veicoli in carreggiata (rilevati e trincee senza ostacoli fissi laterali).

Per barriere da ponte o viadotto, per spartitraffici centrali e/o in presenza di ostacoli fissi laterali, curve pericolose, scarpate ripide, acque o altre sedi stradali o ferroviarie adiacenti, si dovranno adottare anche diverse e più adeguate soluzioni strutturali, come l'infittimento dei pali e l'utilizzo di pali di maggior resistenza.

A interasse non superiore a quello corrispondente a tre fasce, dovrà essere eseguita l'installazione di dispositivi rifrangenti, i quali avranno un'area non inferiore a 50 cm², in modo tale che le loro superfici risultino pressoché normali all'asse stradale.

- 4. Le barriere, nel caso di nuovo impianto o comunque di significativi interventi, dovranno avere caratteristiche di resistenza almeno pari a quelle richieste dal D.M. 11 giugno 1999 e dal D.M. 3 giugno 1998 (tabella A) per il tipo di strada, di traffico e di ubicazione della barriera stessa.
 - Le caratteristiche predette saranno verificate dalla direzione dei lavori sulla base dei certificati di omologazione esibiti dall'appaltatore e ottenuti in base ai disposti del D.M. 11 giugno 1999 e del D.M. 3 giugno 1998, ovvero, nel caso di non avvenuta omologazione e/o nelle more del rilascio di essa, l'appaltatore dovrà fornire alla direzione dei lavori un'idonea documentazione dalla quale risulti che ognuna delle strutture da impiegare nel lavoro ha superato con esito positivo le prove dal vero (crash test) effettuate secondo le procedure fissate dai citati decreti ministeriali. Le prove dovranno essere state effettuate presso i campi prove autorizzati, come da C.M. 6 aprile 2000.
 - La predetta documentazione dovrà essere consegnata alla direzione dei lavori all'atto della consegna dei lavori.
- 5. La barriera di sicurezza a doppia onda è costituita da una serie di sostegni in profilato metallico, da una o più fasce orizzontali metalliche sagomate a doppia onda, con l'interposizione di opportuni elementi distanziatori o travi di ripartizione.

Le fasce sono costituite da nastri metallici di lunghezza compresa tra i 3 e i 4 m, muniti, all'estremità, di una serie di nove fori, per assicurare l'unione al nastro successivo e al sostegno, aventi spessore minimo di 3 mm, altezza effettiva di 300 mm, sviluppo non inferiore a 475 mm e modulo di resistenza non inferiore a 25 cm3. Le giunzioni, che dovranno avere il loro asse in corrispondenza dei sostegni, devono essere ottenute con sovrapposizione di due nastri per 32 cm, eseguita in modo tale che, nel senso di marcia dei veicoli, la fascia che precede sia sovrapposta a quella che segue.

I montanti metallici dovranno avere caratteristiche dimensionali e forme indicate nelle relative certificazioni. I sostegni verticali potranno essere collegati, nella parte inferiore, da uno o più correnti fermaruota realizzati in profilo presso-piegato di idonee sezioni e di conveniente spessore, secondo i vari modelli di barriere certificate.

I distanziatori saranno interposti tra le fasce e i montanti, prevedendone il collegamento tramite bulloneria. Tali sistemi di unione sono costituiti da bulloneria a testa tonda e piastrina copriasola antisfilamento.

I sistemi di unione delle fasce ai sostegni devono consentire la ripresa dell'allineamento sia durante la posa in opera sia in caso di cedimenti del terreno, consentendo limitati movimenti verticali e orizzontali. Ogni tratto sarà completato con i relativi terminali, opportunamente sagomati, in materiale del tutto analogo a quello usato per le fasce.

- 6. I parapetti da installare in corrispondenza dei manufatti saranno costituiti in maniera del tutto analoga alle barriere avanti descritte e, cioè, da una serie di sostegni verticali in profilato metallico, da una fascia orizzontale metallica, fissata ai sostegni a mezzo di distanziatori, e da un corrimano in tubolare metallico posto ad altezza non inferiore a 1 m dal piano della pavimentazione finita.
 - I parapetti realizzati sui ponti (viadotti, sottovia o cavalcavia, sovrappassi, sottopassi, strade sopraelevate, ecc.) dovranno rispondere alle norme previste del D.M. 17 gennaio 2018.
 - I parapetti dovranno essere realizzati, per quanto attiene agli acciai laminati a caldo, con materiali rispondenti alle prescrizioni contenute nel D.M. 17 gennaio 2018.

I sostegni per parapetti saranno in profilato di acciaio, in un solo pezzo opportunamente sagomato, e avranno, per la parte inferiore reggente la fascia, caratteristiche di resistenza pari a quelle richieste per i sostegni delle barriere. I sostegni saranno di norma alloggiati, per la profondità occorrente, in appositi fori di ancoraggio predisposti o da predisporre da parte della stessa impresa, sulle opere d'arte, e fissati con adeguata malta, secondo le prescrizioni previste in progetto e/o indicate della direzione dei lavori. I fori dovranno essere eseguiti secondo le prescrizioni previste in progetto e/o indicate dalla direzione dei lavori; altrettanto dicasi per il ripristino delle superfici manomesse.

La fascia dovrà essere uguale a quella impiegata per la barriera ed essere posta in opera alla stessa altezza di quest'ultima dal piano della pavimentazione finita, anche se l'interasse dei sostegni risulterà inferiore. Il corrimano, in tubolare metallico delle dimensioni esterne non inferiori a 45 mm e dallo spessore non

inferiore a 2,4 mm, sarà fissato allo stesso sostegno della fascia.

Tutte le parti metalliche dei parapetti dovranno essere in acciaio di qualità non inferiore a Fe 360 e assoggettate alla zincatura a caldo mediante il procedimento a bagno.

I quantitativi minimi di zinco saranno di 300 grammi per metro quadrato e per ciascuna faccia. I relativi controlli saranno effettuati secondo i procedimenti previsti dalle norme astm n. A 90/53 e uni 5744/66.

A interasse non superiore a quello corrispondente a tre elementi (in media ogni quattro sostegni), dovrà essere eseguita l'installazione di dispositivi rifrangenti, i quali avranno area non inferiore a 50 cm², in modo che le loro superfici risultino pressoché normali all'asse stradale.

CAPO 2 NORME PER LA MISURAZIONE E VALUTAZIONE DELLE OPERE

Art. 80 - Scavi in genere

- 1. Oltre che per gli obblighi particolari contenuti nel Capitolato Speciale d'Appalto e se non diversamente indicato nei prezzi di elenco, con i prezzi per gli scavi in genere l'Impresa deve ritenersi compensata per tutti gli oneri che essa dovrà incontrare:
 - per il taglio di piante, l'estirpazione di ceppaie, radici, ecc.;

- per il taglio e lo scavo con qualsiasi mezzo delle materie sia asciutte, che bagnate, di qualsiasi consistenza ed anche in presenza d'acqua;
- per la rimozione di pietre e trovanti di volume fino a 0,10 m³;
- per la presenza di acqua stabilizzatasi nel cavo per qualsiasi altezza;
- per il paleggio, l'innalzamento e il trasporto del materiale di risulta al sito di carico sui mezzi di trasporto, compreso il carico sui mezzi e il trasporto e lo scarico a rinterro o a riempimento o a rilevato o a rifiuto entro i limiti di distanza previsti nei prezzi di elenco, compreso la sistemazione delle materie di risulta, oppure il deposito provvisorio del materiale scavato nei luoghi indicati dalla Direzione dei Lavori e successiva ripresa; per la profilatura delle scarpate, pareti e cigli, per lo spianamento del fondo e la configurazione del cavo, per la formazione di gradoni e quanto altro necessario per la sagomatura delle sezioni di scavo secondo i
- per puntellature, sbadacchiature ed armature del cavo di qualsiasi importanza e genere compreso la composizione e la scomposizione, lo sfrido, il deterioramento e le perdite parziali o totali del legname o dei ferri, se non diversamente specificato nei prezzi di elenco;
- per impalcature, ponti e anditi di servizio e costruzioni provvisorie, occorrenti sia per il trasporto delle materie di scavo che per passaggi, attraversamenti, ecc.;
- per la formazione e la successiva rimozione delle rampe di accesso agli scavi di splateamento, delle vie di fuga e nicchie di rifugio, delle staccionate di protezione degli scavi profondi oltre 2 ml.;
- per ogni altra spesa necessaria per l'esecuzione completa degli scavi.
- 2. La misurazione degli scavi verrà effettuata nei seguenti modi:

profili definitivi di progetto;

- il volume degli scavi di sbancamento o splateamento verrà determinato con il metodo delle sezioni ragguagliate in base ai rilevamenti eseguiti in contraddittorio con l'Appaltatore, prima e dopo i relativi lavori;
- gli scavi di fondazione saranno valutati su un volume ottenuto dal prodotto dell'area di base della fondazione stessa per la profondità misurata sotto il piano degli scavi di sbancamento, considerando le pareti perfettamente verticali.

Al volume così calcolato si applicheranno i prezzi fissati per tali opere nell'Elenco prezzi allegato al contratto; essi saranno valutati sempre come se fossero stati eseguiti a pareti verticali ritenendosi già compreso e compensato con il prezzo unitario di elenco ogni onere di maggiore scavo. Per gli scavi di fondazione da eseguire con l'impiego di casseri, paratie o simili strutture, sarà incluso nel volume di scavo per fondazione anche lo spazio occupato dalle strutture stesse. I prezzi di elenco, relativi agli scavi di fondazione, sono applicabili unicamente e rispettivamente ai volumi di scavo compresi fra piani orizzontali consecutivi, stabiliti per diverse profondità, nello stesso elenco dei prezzi. Pertanto la valutazione dello scavo risulterà definita, per ciascuna zona, dal volume ricadente nella zona stessa e dall'applicazione ad esso del relativo prezzo di elenco.

Art. 81 - Gabbioni

- 1. Si computa il volume dei gabbioni posto in opera.
- 2. Prima della messa in opera degli elementi e per ogni partita ricevuta in cantiere, l'Impresa dovrà presentare all'Ufficio di Direzione Lavori il certificato di collaudo a garanzia della Ditta che ha fabbricato i gabbioni. L'ufficio di Direzione Lavori procederà alla ricognizione dei gabbioni per controllare che nei punti di torsione lo zinco non presenti sollevamenti o screpolature che ne consentano il distacco con il grattamento: se l'inconveniente si ripeterà per il 10% dei casi esaminati la partita sarà da scartare.
 - L'Ufficio di Direzione Lavori accerterà altresì il peso complessivo dei gabbioni, mediante pesatura a discrezione di campioni significativi, verificando la corrispondenza con le dichiarazioni del fornitore; se il peso risulterà inferiore, la partita sarà scartata.
 - Resta comunque confermata la facoltà dell'Ufficio di Direzione Lavori di integrare la campagna di prove sopraindicate a propria discrezione in relazione alla tipologia, estesa e importanza dell'opera.

Art. 82 - Calcestruzzi

1. Si computa il volume di calcestruzzo effettivamente realizzato; sono detratti dal computo tutti i vani, vuoti o tracce che abbiano sezioni minime superiori a m² 0,20; è inoltre detratto il volume occupato da altre strutture inserite nei getti, ad esclusione delle armature metalliche.

Art. 83 - Acciaio armatura cls

1. L'acciaio per armatura è computato misurando lo sviluppo lineare effettivo (segnando le sagomature e le uncinature) e moltiplicandolo per il peso unitario, desunto dalle tabelle ufficiali, corrispondente ai diametri effettivamente prescritti, trascurando le quantità superiori alle prescrizioni e le sovrapposizioni.
Nel prezzo oltre alla lavorazione e allo sfrido è compreso l'onere della legatura dei singoli elementi e la posa in opera dell'armatura stessa.

Art. 84 - Geocomposito metallico per rivestimento pareti rocciose

1. La misurazione viene eseguita sulla superficie effettivamente rivestita della parete rocciosa, senza considerare, in quanto inclusi nel prezzo le sovrapposizioni tra le reti, nella superficie sono da computare i risvolti sulla parte sommitale, su eventuali parti laterali, del costone roccioso.

Art. 85 - Acciaio carpenteria metallica

1. L'acciaio da carpenteria metallica è computato a peso; viene pesato prima della posa in opera, con pesatura diretta, a lavori di taglio e/o saldatura completamente ultimati (esclusa l'eventuale verniciatura e coloritura).

Art. 86 - Tiranti in fune di acciaio

1. Si computa la lunghezza posta in opera, rilevata dagli anelli di estremità chiusi.

Art. 87 - Fondazione stradale

- 1. La compattazione e/o la stabilizzazione del sottofondo sarà computata in base alla superficie.
- 2. La fondazione stradale in misto granulare o cementato sarà valutata a m³; il prezzo comprende il costipamento del materiale, le prove di laboratorio e in sito.

Art. 88 - Pavimentazione stradale con bitumi

1. I conglomerati bituminosi posti in opera previa spanditura dell'emulsione bituminosa, stesa del materiale e successivo costipamento mediante rullatura devono essere valutati per ogni metro quadrato, per un prefissato spessore e per i vari strati della pavimentazione.

Art. 89 - Cordoni

1. I cordoni saranno valutati a metro lineare.

Art. 90 - Opere in ferro

 Tutti i lavori in metallo saranno in generale valutati a peso ed i relativi prezzi verranno applicati al peso dei metalli stessi a lavorazione completamente ultimata e determinata prima della loro posa in opera per le opere in ferro nero normale, mentre per le opere in ferro zincato il peso dovrà essere dedotto del 15%.
 I trattamenti eventuali di sabbiatura, zincatura, e verniciatura, con esclusione della verniciatura a due mani di antiruggine, verranno compensati a parte.

Art. 91 - Barriere di sicurezza

- 1. Le barriere stradali di sicurezza sarnno computate a metro lineare.
- 2. Le prove (statiche dinamiche) d'impatto al vero (crash-test) per la valutazione sia delle caratteristiche prestazionali sia dell'efficienza delle barriere di sicurezza stradali (da realizzare a norma del D.M. 3 giugno 1998 e successive modifiche e integrazioni), dovranno essere eseguite, come previsto dalle circolari del

Ministero dei Lavori Pubblici del 15 ottobre 1996 e del 6 aprile 2000, presso i sottoelencati istituti autorizzati:

- il Centro prove per barriere di sicurezza stradali di Anagni Centro rilevamento dati sui materiali di Fiano Romano della Società Autostrade s.p.a.;
- il Laboratorio L. I. E. R., Laboratorie déssais INRETS Equipments de la Route, con sede in D29 Route de Crèmiieu, B.P. 352 69125, Lyon Satolas Aeroport Francia;
- TUV Bayern Sachsen E.V. Institut fur Fahrzeugtechnik GmbH, con sede in Daimlerstrasse, 11 D-85748, Garching (Repubblica Federale Tedesca).

CAPO 3 QUALITA' DEI MATERIALI

Art. 92 - Calcestruzzi

- 1. Nel presente articolo si fa riferimento alle caratteristiche dei componenti del calcestruzzo e ai controlli da effettuare.
- 2. Nelle opere strutturali devono impiegarsi esclusivamente i leganti idraulici previsti dalle disposizioni vigenti in materia, dotati di certificato di conformità (rilasciato da un organismo europeo notificato) a una norma armonizzata della serie UNI EN 197-1 ovvero a uno specifico benestare tecnico europeo (ETA), perché idonei all'impiego previsto, nonché, per quanto non in contrasto, conformi alle prescrizioni di cui alla legge 26 maggio 1965, n. 595.

E' escluso l'impiego di cementi alluminosi.

L'impiego dei cementi richiamati all'art.1, lettera C della legge n. 595/1965, è limitato ai calcestruzzi per sbarramenti di ritenuta.

Per la realizzazione di dighe e altre simili opere massive dove è richiesto un basso calore di idratazione, devono essere utilizzati i cementi speciali con calore di idratazione molto basso conformi alla norma europea armonizzata UNI EN 14216, in possesso di un certificato di conformità rilasciato da un organismo di certificazione europeo notificato.

Qualora il calcestruzzo risulti esposto a condizioni ambientali chimicamente aggressive si devono utilizzare cementi con adeguate caratteristiche di resistenza alle specifiche azioni aggressive. Specificamente in ambiente solfatico si devono impiegare cementi resistenti ai solfati conformi alla norma europea armonizzata UNI EN 197-1 ed alla norma UNI 9156 o, in condizioni di dilavamento, cementi resistenti al dilavamento conformi alla norma UNI 9606.

I sacchi per la fornitura dei cementi devono essere sigillati e in perfetto stato di conservazione. Se l'imballaggio fosse comunque manomesso o il prodotto avariato, il cemento potrà essere rifiutato dalla direzione dei lavori e dovrà essere sostituito con altro idoneo. Se i leganti sono forniti sfusi, la provenienza e la qualità degli stessi dovranno essere dichiarate con documenti di accompagnamento della merce. La qualità del cemento potrà essere accertata mediante prelievo di campioni e loro analisi presso laboratori ufficiali. L'impresa deve disporre in cantiere di silos per lo stoccaggio del cemento, che ne consentano la conservazione in idonee condizioni termoigrometriche.

L'attestato di conformità autorizza il produttore ad apporre il marchio di conformità sull'imballaggio e sulla documentazione di accompagnamento relativa al cemento certificato. Il marchio di conformità è costituito dal simbolo dell'organismo abilitato seguito da:

- nome del produttore e della fabbrica ed eventualmente del loro marchio o dei marchi di identificazione;
- ultime due cifre dell'anno nel quale è stato apposto il marchio di conformità;
- numero dell'attestato di conformità;
- descrizione del cemento;
- estremi del decreto.

Ogni altra dicitura deve essere stata preventivamente sottoposta all'approvazione dell'organismo abilitato.

- 3. Ai fini dell'accettazione dei cementi la direzione dei lavori potrà effettuare le seguenti prove:
 - UNI EN 196-1 Metodi di prova dei cementi. Parte 1. Determinazione delle resistenze meccaniche;
 - UNI EN 196-2 Metodi di prova dei cementi. Parte 2. Analisi chimica dei cementi;
 - UNI EN 196-3 Metodi di prova dei cementi. Parte 3. Determinazione del tempo di presa e della stabilità;

UNI CEN/TR 196-4 - Metodi di prova dei cementi. Parte 4. Determinazione quantitativa dei costituenti;

UNI EN 196-5 - Metodi di prova dei cementi. Parte 5. Prova di pozzolanicità dei cementi pozzolanici;

UNI EN 196-6 - Metodi di prova dei cementi. Parte 6. Determinazione della finezza;

UNI EN 196-7 - Metodi di prova dei cementi. Parte 7. Metodi di prelievo e di campionatura del cemento;

UNI EN 196-8 - Metodi di prova dei cementi. Parte 8. Calore d'idratazione. Metodo per soluzione;

UNI EN 196-9 - Metodi di prova dei cementi. Parte 9. Calore d'idratazione. Metodo semiadiabatico;

UNI EN 196-10 - Metodi di prova dei cementi. Parte 10. Determinazione del contenuto di cromo (VI) idrosolubile nel cemento;

UNI EN 197-1 - Cemento. Parte 1. Composizione, specificazioni e criteri di conformità per cementi comuni;

UNI EN 197-2 - Cemento. Parte 2. Valutazione della conformità;

UNI 10397 - Cementi. Determinazione della calce solubilizzata nei cementi per dilavamento con acqua distillata:

UNI EN 413-1 - Cemento da muratura. Parte 1. Composizione, specificazioni e criteri di conformità;

UNI EN 413-2 - Cemento da muratura. Parte 2: Metodi di prova;

UNI 9606 - Cementi resistenti al dilavamento della calce. Classificazione e composizione.

4. Sono idonei alla produzione di calcestruzzo per uso strutturale gli aggregati ottenuti dalla lavorazione di materiali naturali, artificiali, ovvero provenienti da processi di riciclo conformi alla norma europea armonizzata UNI EN 12620 e, per gli aggregati leggeri, alla norma europea armonizzata UNI EN 13055. È consentito l'uso di aggregati grossi provenienti da riciclo, secondo i limiti riportati nella seguente tabella, a condizione che la miscela di calcestruzzo confezionata con aggregati riciclati venga preliminarmente qualificata e documentata, nonchè accettata in cantiere, attraverso le procedure delle NTC 2018.

Origine del materiale da riciclo	Classe del calcestruzzo	Percentuale di impiego
Demolizioni di edifici (macerie)	= C8/10	fino al 100%
Demolizioni di solo calcestruzzo e calcestruzzo armato (frammenti di calcestruzzo ≥ 90%, UNI EN 933-11:2009)	≤ C20/25	fino al 60%
	≤ C30/37	≤ 30%
	≤ C45/55	≤ 20%
Riutilizzo di calcestruzzo interno negli stabilimenti di prefabbricazione qualificati - da qualsiasi classe	Classe minore del calcestruzzo di origine	fino al 15%
	Stessa classe del calcestruzzo di origine	fino al 10%

Si potrà fare utile riferimento alle norme UNI 8520-1 e UNI 8520-2 al fine di individuare i requisiti chimicofisici, aggiuntivi rispetto a quelli fissati per gli aggregati naturali, che gli aggregati riciclati devono rispettare, in funzione della destinazione finale del calcestruzzo e delle sue proprietà prestazionali (meccaniche, di durabilità e pericolosità ambientale, ecc.), nonché quantità percentuali massime di impiego per gli aggregati di riciclo o classi di resistenza del calcestruzzo, ridotte rispetto a quanto previsto nella precedente tabella.

Gli inerti, naturali o di frantumazione, devono essere costituiti da elementi non gelivi e non friabili, privi di sostanze organiche, limose e argillose, di gesso, ecc., in proporzioni nocive all'indurimento del conglomerato o alla conservazione delle armature.

La ghiaia o il pietrisco devono avere dimensioni massime commisurate alle caratteristiche geometriche della carpenteria del getto e all'ingombro delle armature e devono essere lavati con acqua dolce qualora ciò sia necessario per l'eliminazione di materie nocive.

Il pietrisco deve provenire dalla frantumazione di roccia compatta, non gessosa né geliva, non deve contenere impurità né materie pulverulenti e deve essere costituito da elementi le cui dimensioni soddisfino alle condizioni sopra indicate per la ghiaia.

Il sistema di attestazione della conformità degli aggregati, ai sensi del D.P.R. n. 246/1993, è indicato di seguito.

Specifica tecnica europea armonizzata di riferimento	Uso previsto del cls	Sistema di attestazione della conformità
Aggregati per calcestruzzo	strutturale	2+

Il sistema 2+ (certificazione del controllo di produzione in fabbrica) è quello specificato all'art. 7, comma 1, lettera B, procedura 1 del D.P.R. n. 246/1993, comprensiva della sorveglianza, giudizio e approvazione permanenti del controllo di produzione in fabbrica.

I controlli di accettazione degli aggregati da effettuarsi a cura del direttore dei lavori, come stabilito dalle Norme tecniche per le costruzioni di cui al D.M. 17/01/2018, devono essere finalizzati almeno alla determinazione delle caratteristiche tecniche riportate nella seguente tabella, insieme ai relativi metodi di prova.

Caratteristiche tecniche	
Descrizione petrografica semplificata	
Dimensione dell'aggregato (analisi granulometrica e contenuto dei fini)	
Indice di appiattimento	
Tenore di solfati e zolfo	
Dimensione per il filler	
Resistenza alla frammentazione/frantumazione (per calcestruzzo <i>Rck</i> ≥ C50/60 e aggregato	
proveniente da riciclo)	

- 5. Ferme restando le considerazioni del comma 3, la sabbia per il confezionamento delle malte o del calcestruzzo deve essere priva di solfati e di sostanze organiche, terrose o argillose e avere dimensione massima dei grani di 2 mm, per murature in genere, e di 1 mm, per gli intonaci e murature di paramento o in pietra da taglio.
 - La sabbia naturale o artificiale deve risultare bene assortita in grossezza e costituita da grani resistenti, non provenienti da roccia decomposta o gessosa. Essa deve essere scricchiolante alla mano, non lasciare traccia di sporco, non contenere materie organiche, melmose o comunque dannose. Prima dell'impiego, se necessario, deve essere lavata con acqua dolce per eliminare eventuali materie nocive.
 - La direzione dei lavori potrà accertare in via preliminare le caratteristiche delle cave di provenienza del materiale per rendersi conto dell'uniformità della roccia e dei sistemi di coltivazione e di frantumazione, prelevando dei campioni da sottoporre alle prove necessarie per caratterizzare la roccia nei riguardi dell'impiego.
 - Il prelevamento di campioni potrà essere omesso quando le caratteristiche del materiale risultino da un certificato emesso in seguito a esami fatti eseguire da amministrazioni pubbliche, a seguito di sopralluoghi nelle cave, e i risultati di tali indagini siano ritenuti idonei dalla direzione dei lavori.
 - Il prelevamento dei campioni di sabbia deve avvenire normalmente dai cumuli sul luogo di impiego; diversamente, può avvenire dai mezzi di trasporto ed eccezionalmente dai silos. La fase di prelevamento non deve alterare le caratteristiche del materiale e, in particolare, la variazione della sua composizione granulometrica e perdita di materiale fine. I metodi di prova possono riguardare l'analisi granulometrica e il peso specifico reale.
- 6. Riguardo all'accettazione degli aggregati impiegati per il confezionamento degli impasti di calcestruzzo, il direttore dei lavori, fermi restando i controlli di cui al comma 3, può fare riferimento anche alle seguenti norme:
 - UNI 8520-1 Aggregati per calcestruzzo. Istruzioni complementari per l'applicazione della EN 12620. Designazione e criteri di conformità;
 - UNI 8520-2 Aggregati per calcestruzzo. Istruzioni complementari per l'applicazione della EN 12620. Requisiti;
 - UNI 8520-21 Aggregati per la confezione di calcestruzzi. Confronto in calcestruzzo con aggregati di caratteristiche note;
 - UNI 8520-22 Aggregati per la confezione di calcestruzzi. Determinazione della potenziale reattività degli aggregati in presenza di alcali;
 - UNI EN 1367-2 Prove per determinare le proprietà termiche e la degradabilità degli aggregati. Prova al solfato di magnesio;

UNI EN 1367-4 - Prove per determinare le proprietà termiche e la degradabilità degli aggregati. Determinazione del ritiro per essiccamento;

UNI EN 12620 - Aggregati per calcestruzzo;

UNI EN 1744-1 - Prove per determinare le proprietà chimiche degli aggregati. Analisi chimica;

UNI EN 13139 - Aggregati per malta.

7. Riguardo all'accettazione degli aggregati leggeri impiegati per il confezionamento degli impasti di calcestruzzo, il direttore dei lavori, fermi restando i controlli di cui al comma 3, potrà farà riferimento anche alle seguenti norme:

UNI EN 13055-1 - Aggregati leggeri per calcestruzzo, malta e malta per iniezione;

UNI EN 13055-2 - Aggregati leggeri per miscele bituminose, trattamenti superficiali e per applicazioni in strati legati e non legati;

UNI 11013 - Aggregati leggeri. Argilla e scisto espanso. Valutazione delle proprietà mediante prove su calcestruzzo convenzionale.

8. È ammesso l'impiego di aggiunte, in particolare di ceneri volanti, loppe granulate d'altoforno e fumi di silice, purché non vengano modificate negativamente le caratteristiche prestazionali del conglomerato cementizio.

Le ceneri volanti devono soddisfare i requisiti della norma UNI EN 450-1 e potranno essere impiegate rispettando i criteri stabiliti dalle norme UNI EN 206 e UNI 11104.

I fumi di silice devono essere costituiti da silice attiva amorfa presente in quantità maggiore o uguale all'85% del peso totale.

9. Le ceneri volanti, costituenti il residuo solido della combustione di carbone, dovranno provenire da centrali termoelettriche in grado di fornire un prodotto di qualità costante nel tempo e documentabile per ogni invio, e non contenere impurezze (lignina, residui oleosi, pentossido di vanadio, ecc.) che possano danneggiare o ritardare la presa e l'indurimento del cemento.

Particolare attenzione dovrà essere prestata alla costanza delle loro caratteristiche, che devono soddisfare i requisiti della norma UNI EN 450.

Il dosaggio delle ceneri volanti non deve superare il 25% del peso del cemento. Detta aggiunta non deve essere computata in alcun modo nel calcolo del rapporto acqua/cemento.

Nella progettazione del mix design e nelle verifiche periodiche da eseguire, andrà comunque verificato che l'aggiunta di ceneri praticata non comporti un incremento della richiesta di additivo per ottenere la stessa fluidità dell'impasto privo di ceneri maggiore dello 0,2%.

Le norme di riferimento sono:

UNI EN 450-1 - Ceneri volanti per calcestruzzo. Parte 1: Definizione, specificazioni e criteri di conformità;

UNI EN 450-2 - Ceneri volanti per calcestruzzo. Parte 2: Valutazione della conformità;

UNI EN 451-1 - Metodo di prova delle ceneri volanti. Determinazione del contenuto di ossido di calcio libero; UNI EN 451-2 - Metodo di prova delle ceneri volanti. Determinazione della finezza mediante stacciatura umida.

10. La silice attiva colloidale amorfa è costituita da particelle sferiche isolate di SiO_2 , con diametro compreso tra 0,01 e 0,5 micron, e ottenuta da un processo di tipo metallurgico, durante la produzione di silice metallica o di leghe ferro-silicio, in un forno elettrico ad arco.

La silica fume può essere fornita allo stato naturale, così come può essere ottenuta dai filtri di depurazione sulle ciminiere delle centrali a carbone oppure come sospensione liquida di particelle con contenuto secco di 50% in massa.

Si dovrà porre particolare attenzione al controllo in corso d'opera del mantenimento della costanza delle caratteristiche granulometriche e fisico-chimiche.

Il dosaggio della silica fume non deve comunque superare il 7% del peso del cemento. Tale aggiunta non sarà computata in alcun modo nel calcolo del rapporto acqua/cemento.

Se si utilizzano cementi di tipo I, potrà essere computata nel dosaggio di cemento e nel rapporto acqua/cemento una quantità massima di tale aggiunta pari all'11% del peso del cemento.

Nella progettazione del mix design e nelle verifiche periodiche da eseguire, andrà comunque verificato che l'aggiunta di microsilice praticata non comporti un incremento della richiesta dell'additivo maggiore dello 0,2%, per ottenere la stessa fluidità dell'impasto privo di silica fume.

Le norme di riferimento sono:

UNI EN 13263-1 - Fumi di silice per calcestruzzo. Parte 1: Definizioni, requisiti e criteri di conformità;

UNI EN 13263-2 - Fumi di silice per calcestruzzo. Parte 2: Valutazione della conformità.

- 11. L'impiego di additivi, come per ogni altro componente, dovrà essere preventivamente sperimentato e dichiarato nel mix design della miscela di conglomerato cementizio, preventivamente progettata. Gli additivi per impasti cementizi si intendono classificati come segue:
 - fluidificanti;
 - aeranti;
 - ritardanti;
 - acceleranti;
 - fluidificanti-aeranti;
 - fluidificanti-ritardanti;
 - fluidificanti-acceleranti;
 - antigelo-superfluidificanti.

Gli additivi devono essere conformi alla parte armonizzata della norma europea UNI EN 934-2.

L'impiego di eventuali additivi dovrà essere subordinato all'accertamento dell'assenza di ogni pericolo di aggressività.

Gli additivi dovranno possedere le seguenti caratteristiche:

- essere opportunamente dosati rispetto alla massa del cemento;
- non contenere componenti dannosi alla durabilità del calcestruzzo;
- non provocare la corrosione dei ferri d'armatura;
- non interagire sul ritiro o sull'espansione del calcestruzzo. In caso contrario, si dovrà procedere alla determinazione della stabilità dimensionale.

Gli additivi da utilizzarsi, eventualmente, per ottenere il rispetto delle caratteristiche delle miscele in conglomerato cementizio, potranno essere impiegati solo dopo una valutazione degli effetti per il particolare conglomerato cementizio da realizzare e nelle condizioni effettive di impiego.

Particolare cura dovrà essere posta nel controllo del mantenimento nel tempo della lavorabilità del calcestruzzo fresco.

Per le modalità di controllo e di accettazione il direttore dei lavori potrà far eseguire prove o accettare l'attestazione di conformità alle norme vigenti.

12. Gli additivi acceleranti, allo stato solido o liquido, hanno la funzione di addensare la miscela umida fresca e portare ad un rapido sviluppo delle resistenze meccaniche.

Il dosaggio degli additivi acceleranti dovrà essere contenuto tra lo 0,5 e il 2% (ovvero come indicato dal fornitore) del peso del cemento. In caso di prodotti che non contengono cloruri, tali valori possono essere incrementati fino al 4%. Per evitare concentrazioni del prodotto, lo si dovrà opportunamente diluire prima dell'uso.

La direzione dei lavori si riserva di verificare la loro azione prima dell'impiego, mediante:

- l'esecuzione di prove di resistenza meccanica del calcestruzzo previste dal paragrafo 11.2.2 del D.M. 14/01/2008 e norme UNI applicabili per la fornitura contrattuale;
- la determinazione dei tempi di inizio e fine presa del calcestruzzo additivato mediante la misura della resistenza alla penetrazione, da eseguire con riferimento alla norma UNI 7123.

In generale, per quanto non specificato si rimanda alla norma UNI EN 934-2.

- 13. Gli additivi ritardanti potranno essere eccezionalmente utilizzati, previa idonea qualifica e preventiva approvazione da parte della direzione dei lavori, per:
 - particolari opere che necessitano di getti continui e prolungati, al fine di garantire la loro corretta monoliticità;
 - getti in particolari condizioni climatiche;
 - singolari opere ubicate in zone lontane e poco accessibili dalle centrali/impianti di betonaggio. La direzione dei lavori si riserva di verificare la loro azione prima dell'impiego, mediante:
 - l'esecuzione di prove di resistenza meccanica del calcestruzzo previste dal paragrafo 11.2.2 del D.M. 17 gennaio 2018 e norme UNI applicabili per la fornitura contrattuale;
 - la determinazione dei tempi di inizio e fine presa del calcestruzzo additivato mediante la misura della resistenza alla penetrazione, da eseguire con riferimento alla norma UNI 7123.

Le prove di resistenza a compressione devono essere eseguite di regola dopo la stagionatura di 28 giorni e

la presenza dell'additivo non deve comportare diminuzione della resistenza del calcestruzzo.

In generale, per quanto non specificato si rimanda alla norma UNI EN 934-2.

14. Gli additivi antigelo sono da utilizzarsi nel caso di getto di calcestruzzo effettuato in periodo freddo, previa autorizzazione della direzione dei lavori.

Il dosaggio degli additivi antigelo dovrà essere contenuto tra lo 0,5 e il 2% (ovvero come indicato dal fornitore) del peso del cemento, che dovrà essere del tipo ad alta resistenza e in dosaggio superiore rispetto alla norma. Per evitare concentrazioni del prodotto, prima dell'uso, dovrà essere opportunamente miscelato al fine di favorire la solubilità a basse temperature.

La direzione dei lavori si riserva di verificare la loro azione prima e dopo l'impiego, mediante:

- l'esecuzione di prove di resistenza meccanica del calcestruzzo previste dal paragrafo 11.2.2 del D.M. 17/01/2018 e norme UNI applicabili per la fornitura contrattuale;
- la determinazione dei tempi d'inizio e fine presa del calcestruzzo additivato mediante la misura della resistenza alla penetrazione, da eseguire con riferimento alla norma UNI 7123.

Le prove di resistenza a compressione di regola devono essere eseguite dopo la stagionatura di 28 giorni, la presenza dell'additivo non deve comportare diminuzione della resistenza del calcestruzzo.

15. Gli additivi fluidificanti sono da utilizzarsi per aumentare la fluidità degli impasti, mantenendo costante il rapporto acqua/cemento e la resistenza del calcestruzzo, previa autorizzazione della direzione dei lavori. L'additivo superfluidificante di prima e seconda additivazione dovrà essere di identica marca e tipo. Nel caso in cui il mix design preveda l'uso di additivo fluidificante come prima additivazione, associato ad additivo superfluidificante a piè d'opera, questi dovranno essere di tipo compatibile e preventivamente sperimentati in fase di progettazione del mix design e di prequalifica della miscela.

Dopo la seconda aggiunta di additivo, sarà comunque necessario assicurare la miscelazione per almeno 10 minuti prima dello scarico del calcestruzzo. La direzione dei lavori potrà richiedere una miscelazione più prolungata in funzione dell'efficienza delle attrezzature e delle condizioni di miscelamento.

Il dosaggio degli additivi fluidificanti dovrà essere contenuto tra lo 0,2 e lo 0,3% (ovvero come indicato dal fornitore) del peso del cemento. Gli additivi superfluidificanti vengono aggiunti in quantità superiori al 2% rispetto al peso del cemento.

In generale, per quanto non specificato si rimanda alla norma UNI EN 934-2.

La direzione dei lavori si riserva di verificare la loro azione prima e dopo l'impiego mediante:

- l'esecuzione di prove di resistenza meccanica del calcestruzzo previste dal paragrafo 11.2.2 del D.M. 17/01/2018 e norme UNI applicabili per la fornitura contrattuale;
- la prova di essudamento prevista dalla norma UNI 7122.
- 16. Gli additivi aeranti sono da utilizzarsi per migliorare la resistenza del calcestruzzo ai cicli di gelo e disgelo, previa autorizzazione della direzione dei lavori. La quantità dell'aerante deve essere compresa tra lo 0,005 e lo 0,05% (ovvero come indicato dal fornitore) del peso del cemento.

La direzione dei lavori si riserva di verificare la loro azione prima e dopo l'impiego mediante:

- la determinazione del contenuto d'aria secondo la norma UNI EN 12350-7;
- l'esecuzione di prove di resistenza meccanica del calcestruzzo previste dal paragrafo 11.2.2 del D.M. 17/01/2018 e norme UNI applicabili per la fornitura contrattuale;
- prova di resistenza al gelo secondo la norma UNI 7087;
- prova di essudamento secondo la norma UNI 7122.

Le prove di resistenza a compressione del calcestruzzo, di regola, devono essere eseguite dopo la stagionatura.

La direzione dei lavori, per quanto non specificato, per valutare l'efficacia degli additivi potrà disporre l'esecuzione delle seguenti prove:

UNI EN 480-4 - Additivi per calcestruzzo, malta e malta per iniezione. Metodi di prova. Parte 4: Determinazione della quantità di acqua essudata del calcestruzzo;

UNI EN 480-5 - Additivi per calcestruzzo, malta e malta per iniezione. Metodi di prova. Parte 5: Determinazione dell'assorbimento capillare;

UNI EN 480-6 - Additivi per calcestruzzo, malta e malta per iniezione. Metodi di prova. Parte 6: Analisi all'infrarosso;

UNI EN 480-8 - Additivi per calcestruzzo, malta e malta per iniezione. Metodi di prova. Determinazione del tenore di sostanza secca convenzionale;

UNI EN 480-10 - Additivi per calcestruzzo, malta e malta per iniezione. Metodi di prova. Determinazione

del tenore di cloruri solubili in acqua;

UNI EN 480-11 - Additivi per calcestruzzo, malta e malta per iniezione. Metodi di prova. Parte 11: Determinazione delle caratteristiche dei vuoti di aria nel calcestruzzo indurito;

UNI EN 480-12 - Additivi per calcestruzzo, malta e malta per iniezione. Metodi di prova. Parte 12: Determinazione del contenuto di alcali negli additivi;

UNI EN 480-13 - Additivi per calcestruzzo, malta e malta per iniezione. Metodi di prova. Parte 13: Malta da muratura di riferimento per le prove sugli additivi per malta;

UNI EN 480-14 - Additivi per calcestruzzo, malta e malta per iniezione. Metodi di prova. Parte 14: Determinazione dell'effetto sulla tendenza alla corrosione dell'acciaio di armatura mediante prova elettrochimica potenziostatica;

UNI EN 934-1 - Additivi per calcestruzzo, malta e malta per iniezione. Parte 1. Requisiti comuni;

UNI EN 934-2 - Additivi per calcestruzzo, malta e malta per iniezione. Parte 2. Additivi per calcestruzzo. Definizioni, requisiti, conformità, marcatura ed etichettatura;

UNI EN 934-3 - Additivi per calcestruzzo, malta e malta per iniezione. Parte 3. Additivi per malte per opere murarie. Definizioni, requisiti, conformità, marcatura ed etichettatura;

UNI EN 934-4 - Additivi per calcestruzzo, malta e malta per iniezione. Parte 4. Additivi per malta per iniezione per cavi di precompressione. Definizioni, requisiti, conformità, marcatura ed etichettatura;

UNI EN 934-5 - Additivi per calcestruzzo, malta e malta per iniezione. Parte 5. Additivi per calcestruzzo proiettato. Definizioni, requisiti, conformità, marcatura ed etichettatura;

UNI EN 934-6 - Additivi per calcestruzzo, malta e malta per iniezione. Parte 6. Campionamento, controllo e valutazione della conformità.

17. Gli agenti espansivi sono da utilizzarsi per aumentare il volume del calcestruzzo sia in fase plastica sia indurito, previa autorizzazione della direzione dei lavori. La quantità dell'aerante deve essere compresa tra il 7 e il 10% (ovvero come indicato dal fornitore) del peso del cemento.

La direzione dei lavori si riserva di verificare la loro azione prima e dopo l'impiego mediante:

- l'esecuzione di prove di resistenza meccanica del calcestruzzo previste dal paragrafo 11.2.2 del D.M. 17/01/2018 e norme UNI applicabili per la fornitura contrattuale;
- la determinazione dei tempi di inizio e fine presa del calcestruzzo additivato mediante la misura della resistenza alla penetrazione, da eseguire con riferimento alla norma UNI 7123.

Le prove di resistenza a compressione del calcestruzzo, di regola, devono essere eseguite dopo la stagionatura.

Le norme di riferimento sono:

UNI 8146 - Agenti espansivi non metallici per impasti cementizi. Idoneità e relativi metodi di controllo;

UNI 8147 - Agenti espansivi non metallici per impasti cementizi. Determinazione dell'espansione contrastata della malta contenente l'agente espansivo;

UNI 8148 - Agenti espansivi non metallici per impasti cementizi. Determinazione dell'espansione contrastata del calcestruzzo contenente l'agente espansivo;

UNI 8149 - Agenti espansivi non metallici per impasti cementizi. Determinazione della massa volumica.

UNI 8146 - Agenti espansivi non metallici per impasti cementizi. Idoneità e relativi metodi di controllo;

UNI 8147 - Agenti espansivi non metallici per impasti cementizi. Determinazione dell'espansione contrastata della malta contenente l'agente espansivo;

UNI 8148 - Agenti espansivi non metallici per impasti cementizi. Determinazione dell'espansione contrastata del calcestruzzo contenente l'agente espansivo.

- 18. Per quanto riguarda gli eventuali prodotti antievaporanti filmogeni, l'appaltatore deve preventivamente sottoporre all'approvazione della direzione dei lavori la documentazione tecnica sul prodotto e sulle modalità di applicazione. Il direttore dei lavori deve accertarsi che il materiale impiegato sia compatibile con prodotti di successive lavorazioni (per esempio, con il primer di adesione di guaine per impermeabilizzazione di solette) e che non interessi le zone di ripresa del getto.
- 19. Come disarmanti per le strutture in cemento armato, è vietato usare lubrificanti di varia natura e oli esausti. Dovranno, invece, essere impiegati prodotti specifici, per i quali sia stato verificato che non macchino o danneggino la superficie del conglomerato cementizio indurito, specie se a faccia vista.
- 20. L'acqua per gli impasti deve essere dolce, limpida, priva di sali in percentuali dannose (particolarmente solfati e cloruri), priva di materie terrose e non aggressiva.

L'acqua, a discrezione della direzione dei lavori, in base al tipo di intervento o di uso, potrà essere trattata

con speciali additivi, per evitare l'insorgere di reazioni chmico-fisiche al contatto con altri componenti l'impasto. È vietato l'impiego di acqua di mare.

L'acqua di impasto, ivi compresa l'acqua di riciclo, dovrà essere conforme alla norma UNI EN 1008, come stabilito dalle Norme tecniche per le costruzioni emanate con D.M. 17 gennaio 2018.

A discrezione della direzione dei lavori, l'acqua potrà essere trattata con speciali additivi, in base al tipo di intervento o di uso, per evitare l'insorgere di reazioni chimico-fisiche al contatto con altri componenti d'impasto.

Caratteristica	Prova	Limiti di accettabilità
Ph	Analisi chimica	Da 5,5 a 8,5
Contenuto solfati	Analisi chimica	SO4 minore 800 mg/l
Contenuto cloruri	Analisi chimica	CI minore 300 mg/l
Contenuto acido solfidrico	Analisi chimica	minore 50 mg/l
Contenuto totale di sali minerali	Analisi chimica	minore 3000 mg/l
Contenuto di sostanze organiche	Analisi chimica	minore 100 mg/l
Contenuto di sostanze solide sospese	Analisi chimica	minore 2000 mg/l

21. Per le classi di resistenza normalizzate per calcestruzzo normale, si può fare utile riferimento a quanto indicato nella norma UNI EN 206-1 e nella norma UNI 11104.

Sulla base della denominazione normalizzata, vengono definite le classi di resistenza riportate nella seguente tabella.

Classi di resistenza
C8/10
C12/15
C16/20
C20/25
C25/30
C30/37
C35/45
C40/50
C45/55
C50/60
C55/67
C60/75
C70/85
C80/95
C90/105

Oltre alle classi di resistenza riportate in tabella si possono prendere in considerazione le classi di resistenza già in uso C28/35 e C32/40.

I calcestruzzi delle diverse classi di resistenza trovano impiego secondo quanto riportato nella seguente tabella, fatti salvi i limiti derivanti dal rispetto della durabilità.

Strutture di destinazione	Classe di resistenza minima
Per strutture non armate o a bassa percentuale di armatura	C8/10
Per strutture semplicemente armate	C16/20
Per strutture precompresse	C28/35

Per le classi di resistenza superiori a C45/55, la resistenza caratteristica e tutte le grandezze meccaniche e fisiche che hanno influenza sulla resistenza e durabilità del conglomerato devono essere accertate prima dell'inizio dei lavori tramite un'apposita sperimentazione preventiva e la produzione deve seguire specifiche procedure per il controllo di qualità.

22. Il calcestruzzo va prodotto in regime di controllo di qualità, con lo scopo di garantire che rispetti le prescrizioni definite in sede di progetto.

Il controllo deve articolarsi nelle seguenti fasi:

- a. valutazione preliminare della resistenza, con la quale si determina, prima della costruzione dell'opera, la miscela per produrre il calcestruzzo con la resistenza caratteristica di progetto;
- b. controllo di produzione, effettuato durante la produzione del calcestruzzo stesso;
- c. controllo di accettazione, eseguito dalla Direzione dei Lavori durante l'esecuzione delle opere, con prelievi effettuati contestualmente al getto dei relativi elementi strutturali;
- d. prove complementari, ove necessario, a completamento dei controlli di accettazione.
- 23. Per quanto concerne la valutazione preliminare di cui alla lettera a) del comma 22, l'appaltatore, prima dell'inizio della costruzione di un'opera, deve garantire, attraverso idonee prove preliminari, la resistenza caratteristica per ciascuna miscela omogenea di conglomerato che verrà utilizzata per la costruzione dell'opera.
 - Il Direttore dei Lavori ha l'obbligo di acquisire, prima dell'inizio della costruzione, la documentazione relativa alla valutazione preliminare delle prestazioni e di accettare le tipologie di calcestruzzo da fornire, con facoltà di far eseguire ulteriori prove preliminari.
- 24. Relativamente al controllo di cui alla lettera c) del comma 22, il Direttore dei Lavori ha l'obbligo di eseguire controlli sistematici in corso d'opera per verificare la conformità tra le caratteristiche del conglomerato messo in opera a quello stabilito dal progetto e garantito in sede di valutazione preliminare.

Il controllo di accettazione va eseguito su miscele omogenee e si articola, in funzione del quantitativo di conglomerato accettato, nel:

- controllo tipo A
- controllo tipo B.

Il controllo di accettazione è positivo ed il quantitativo di calcestruzzo accettato se risultano verificate le due disuguaglianze riportate nella tabella seguente, come stabilito nel D.M. 17/01/2018:

Controllo di tipo A	Controllo di tipo B	
R _{c,min} >= R _{ck} -	3,5	
R _{cm28} >= R _{ck} + 3,5	$R_{cm28} >= R_{ck} + 1,48 s$	
(N° prelievi 3)	(N° prelievi >= 15)	
Ove:		
R _{cm28} = resistenza media dei prelievi (N/mm²);		
R _{c,min} = minore valore di resistenza dei prelievi (N/mm²);		
s = scarto quadratico medio.		

Il controllo di Tipo A è riferito ad un quantitativo di miscela omogenea non maggiore di 300 m³. Ogni controllo di accettazione di tipo A è rappresentato da tre prelievi, ciascuno dei quali eseguito su un massimo di 100 m³ di getto di miscela omogenea. Risulta quindi un controllo di accettazione ogni 300 m³ massimo di getto. Per ogni giorno di getto di calcestruzzo va comunque effettuato almeno un prelievo.

Nelle costruzioni con meno di 100 m³ di getto di miscela omogenea, fermo restando l'obbligo di almeno 3 prelievi e del rispetto delle limitazioni di cui sopra, è consentito derogare dall'obbligo di prelievo giornaliero. Nelle costruzioni con più di 1500 m³ di miscela omogenea è obbligatorio il controllo di accettazione di tipo statistico (tipo B). Il controllo è riferito ad una definita miscela omogenea e va eseguito con frequenza non minore di un controllo ogni 1500 m³ di conglomerato.

Ogni controllo di accettazione di tipo B è costituito da almeno 15 prelievi, ciascuno dei quali eseguito su 100 m³ di getto di miscela omogenea. Per ogni giorno di getto va comunque effettuato almeno un prelievo. Se si eseguono controlli statistici accurati, l'interpretazione di risultati sperimentali può essere svolta con i metodi completi dell'analisi statistica la legge di distribuzione più corretta e il valor medio unitamente al coefficiente di variazione (rapporto tra deviazione standard e valore medio).

Per calcestruzzi con coefficiente di variazione superiore a 0,15 occorrono controlli molto accurati, integrati con prove complementari.

25. Le prove complementari di cui alla lettera d) del comma 22 si eseguono al fine di stimare la resistenza del conglomerato ad una età corrispondente a particolari fasi di costruzione (precompressione, messa in opera) o condizioni particolari di utilizzo (temperature eccezionali, ecc.).

Il procedimento di controllo è uguale a quello dei controlli di accettazione.

Tali prove non potranno però essere sostitutive dei "controlli di accettazione" che vanno riferiti a provini confezionati e maturati secondo le prescrizioni regolamentari, ma potranno servire al Direttore dei Lavori per dare un giudizio del conglomerato ove questo non rispetti il "controllo di accettazione".

26. Le modalità di prelievo e i procedimenti per le successive prove devono rispettare le norme vigenti.

Art. 93 - Materiale riempimento gabbioni

- 1. Il materiale di riempimento dei gabbioni sarà costituito da pietrame di cava spaccato o da ciottolame di fiume preferibilmente di forma appiattita; in ogni caso le facce esterne dovranno essere eseguite con pietrame di cava di forma parallelepipeda e squadrata, così da risultare sistemate come un muro a secco, ben scagliato in modo da non lasciare vuoti. Il nucleo interno potrà eventualmente essere realizzato con ciottoli di fiume. Le dimensioni del pietrame e dei ciottoli non dovranno essere inferiori, in nessuna direzione, a 15 cm.
- 2. Il pietrame di riempimento utilizzati per la costruzione dell'opera dovranno corrispondere ai requisiti essenziali di compattezza, omogeneità e durabilità; dovranno inoltre essere esenti da giunti, fratture e piani di sfalsamento e rispettare i seguenti limiti:

- massa volumica: \geq 24 kN/m3 (2400 kgf/m³); - resistenza alla compressione: \geq 80 Mpa (800 kgf/cm²);

- coefficiente di usura: \leq 1,5 mm; - coefficiente di imbibizione: \leq 5%;

- gelività: il materiale deve risultare non gelivo.
- 3. Le prove relative alla determinazione delle caratteristiche fisiche del pietrame (determinazione del peso specifico, del coefficiente di imbibizione e della gelività) saranno effettuate, a carico dell'impresa, seguendo quanto riportato al Capo II delle "Norme per l'accettazione delle pietre naturali da costruzione" di cui al R.D. 16 novembre 1939, n.2232; per le prove di resistenza meccanica (resistenza alla compressione e all'usura per attrito radente), si farà riferimento al Capo III della stessa normativa.

Art. 94 - Acciaio per cemento armato

- 1. Le Nuove norme tecniche per le costruzioni (D.M. 17 gennaio 2018) prevedono per tutti gli acciai tre forme di controllo obbligatorie (paragrafo 11.3.1):
 - in stabilimento di produzione, da eseguirsi sui lotti di produzione;
 - nei centri di trasformazione;
 - di accettazione in cantiere.

A tale riguardo, il *lotto di produzione* si riferisce a produzione continua, ordinata cronologicamente mediante apposizione di contrassegni al prodotto finito (rotolo finito, bobina di trefolo, fascio di barre, ecc.). Un lotto di produzione deve avere valori delle grandezze nominali omogenee (dimensionali, meccaniche, di formazione) e può essere compreso tra 30 e 120 t.

- 2. Ciascun prodotto qualificato deve essere costantemente riconoscibile, per quanto concerne le caratteristiche qualitative, e rintracciabile, per quanto concerne lo stabilimento di produzione.
 - Il marchio indelebile deve essere depositato presso il servizio tecnico centrale e deve consentire, in maniera inequivocabile, di risalire:
 - all'azienda produttrice;
 - allo stabilimento;
 - al tipo di acciaio e alla sua eventuale saldabilità.

Per stabilimento si intende un'unità produttiva a sé stante, con impianti propri e magazzini per il prodotto finito

Nel caso di unità produttive multiple appartenenti allo stesso produttore, la qualificazione deve essere ripetuta per ognuna di esse e per ogni tipo di prodotto in esse fabbricato.

Considerata la diversa natura, forma e dimensione dei prodotti, le caratteristiche degli impianti per la loro produzione, nonché la possibilità di fornitura sia in pezzi singoli sia in fasci, differenti possono essere i sistemi di marchiatura adottati, anche in relazione all'uso, quali, per esempio, l'impressione sui cilindri di

laminazione, la punzonatura a caldo e a freddo, la stampigliatura a vernice, la targhettatura, la sigillatura dei fasci e altri.

Permane, comunque, l'obbligatorietà del marchio di laminazione per quanto riguarda le barre e i rotoli.

Ogni prodotto deve essere marchiato con identificativi diversi da quelli di prodotti aventi differenti caratteristiche ma fabbricati nello stesso stabilimento e con identificativi differenti da quelli di prodotti con uguali caratteristiche ma fabbricati in altri stabilimenti, siano essi o meno dello stesso produttore. La marchiatura deve essere inalterabile nel tempo e senza possibilità di manomissione.

Tenendo presente che gli elementi determinanti della marcatura sono la sua inalterabilità nel tempo e l'impossibilità di manomissione, il produttore deve rispettare le modalità di marcatura denunciate nella documentazione presentata al servizio tecnico centrale, e deve comunicare tempestivamente le eventuali modifiche apportate.

Il prodotto di acciaio non può essere impiegato in caso di:

- mancata marcatura;
- non corrispondenza a quanto depositato;
- illeggibilità, anche parziale, della marcatura.

Eventuali disposizioni supplementari atte a facilitare l'identificazione e la rintracciabilità del prodotto attraverso il marchio possono essere emesse dal servizio tecnico centrale.

Secondo le UNI EN 10080 i paesi di origine sono individuati dal numero di nervature trasversali normali comprese tra l'inizio della marcatura e la nervatura speciale successiva, che è pari a 4 per l'Italia.

Su un lato della barra/rotolo, inoltre, vengano riportati dei simboli che identificano l'inizio di lettura del marchio (start: due nervature ingrossate consecutive), l'identificazione del paese produttore e dello stabilimento. Sull'altro lato, invece, ci sono i simboli che identificano l'inizio della lettura (start: tre nervature ingrossate consecutive) e un numero che identifica la classe tecnica dell'acciaio che deve essere depositata presso il registro europeo dei marchi, da 101 a 999 escludendo i multipli di 10.

- 3. Può accadere che durante il processo costruttivo, presso gli utilizzatori, presso i commercianti o presso i trasformatori intermedi, l'unità marcata (pezzo singolo o fascio) venga scorporata, per cui una parte, o il tutto, perda l'originale marcatura del prodotto. In questo caso, tanto gli utilizzatori quanto i commercianti e i trasformatori intermedi, oltre a dover predisporre idonee zone di stoccaggio, hanno la responsabilità di documentare la provenienza del prodotto mediante i documenti di accompagnamento del materiale e gli estremi del deposito del marchio presso il servizio tecnico centrale.
 - In tal caso, i campioni destinati al laboratorio incaricato delle prove di cantiere devono essere accompagnati dalla sopraindicata documentazione e da una dichiarazione di provenienza rilasciata dal direttore dei lavori.
- 4. I produttori, i successivi intermediari e gli utilizzatori finali devono assicurare una corretta archiviazione della documentazione di accompagnamento dei materiali garantendone la disponibilità per almeno dieci anni e devono mantenere evidenti le marcature o le etichette di riconoscimento per la rintracciabilità del prodotto.
- 5. Tutti i certificati relativi alle prove meccaniche degli acciai, sia in stabilimento sia in cantiere o nel luogo di lavorazione, devono riportare l'indicazione del marchio identificativo, rilevato a cura del laboratorio incaricato dei controlli, sui campioni da sottoporre a prove.
 - Nel caso i campioni fossero sprovvisti del marchio identificativo, ovvero il marchio non dovesse rientrare fra quelli depositati presso il servizio tecnico centrale, il laboratorio dovrà tempestivamente informare di ciò il servizio tecnico centrale e il direttore dei lavori.
 - Le certificazioni così emesse non possono assumere valenza ai fini della vigente normativa, il materiale non può essere utilizzato e il direttore dei lavori deve prevedere, a cura e spese dell'impresa, l'allontanamento dal cantiere del materiale non conforme.
- 6. Le Nuove norme tecniche (paragrafo 11.3.1.5) stabiliscono che tutte le forniture di acciaio devono essere accompagnate dall'attestato di qualificazione del servizio tecnico centrale e dal certificato di controllo interno tipo 3.1, di cui alla norma UNI EN 10204, dello specifico lotto di materiale fornito.
 - Il riferimento agli attestati comprovanti la qualificazione del prodotto deve essere riportato sul documento di trasporto.
 - Le forniture effettuate da un commerciante o da un trasformatore intermedio devono essere accompagnate da copia dei documenti rilasciati dal produttore e completati con il riferimento al documento di trasporto del commerciante o trasformatore intermedio.

Nel caso di fornitura in cantiere non proveniente da centro di trasformazione, ildirettore dei lavori, prima della messa in opera, è tenuto a verificare quanto sopra indicato e a rifiutare le eventuali forniture non conformi.

- 7. Le Nuove norme tecniche (paragrafo 11.3.1.7) definiscono centro di trasformazione, nell'ambito degli acciai per cemento armato, un impianto esterno alla fabbrica e/o al cantiere, fisso o mobile, che riceve dal produttore di acciaio elementi base (barre o rotoli, reti, lamiere o profilati, profilati cavi, ecc.) e confeziona elementi strutturali direttamente impiegabili in cantiere, pronti per la messa in opera o per successive lavorazioni.
 - Il centro di trasformazione deve possedere tutti i requisiti previsti dalle Nuove norme tecniche per le costruzioni.
- 8. Il centro di trasformazione può ricevere e lavorare solo prodotti qualificati all'origine, accompagnati dall'attestato di qualificazione del servizio tecnico centrale.
 - Particolare attenzione deve essere posta nel caso in cui nel centro di trasformazione vengano utilizzati elementi base, comunque qualificati, ma provenienti da produttori differenti, attraverso specifiche procedure documentate che garantiscano la rintracciabilità dei prodotti.
- 9. Tutti i prodotti forniti in cantiere dopo l'intervento di un trasformatore devono essere accompagnati da idonea documentazione che identifichi in modo inequivocabile il centro di trasformazione stesso. In particolare, ogni fornitura in cantiere di elementi presaldati, presagomati o preassemblati deve essere accompagnata:
 - da dichiarazione, su documento di trasporto, degli estremi dell'attestato di "Denuncia dell'attività del centro di trasformazione", rilasciato dal servizio tecnico centrale, recante il logo o il marchio del centro di trasformazione;
 - dall'attestazione inerente l'esecuzione delle prove di controllo interno fatte eseguire dal direttore tecnico del centro di trasformazione, con l'indicazione dei giorni nei quali la fornitura è stata lavorata;
 - la dichiarazione contenente i riferimenti alla documentazione fornita dal fabbricante ai sensi del § 11.3.1.5 in relazione ai prodotti utilizzati nell'ambito della specifica fornitura.
 - Il direttore dei lavori è tenuto a verificare quanto sopra indicato e a rifiutare le eventuali forniture non conformi, ferme restando le responsabilità del centro di trasformazione. Della documentazione di cui sopra dovrà prendere atto il collaudatore statico, che deve riportare nel certificato di collaudo statico gli estremi del centro di trasformazione che ha fornito l'eventuale materiale lavorato.
- 10. Le Nuove norme tecniche per le costruzioni ammettono esclusivamente l'impiego di acciai saldabili e nervati idoneamente qualificati secondo le procedure previste dalle stesse norme e controllati con le modalità previste per gli acciai per cemento armato precompresso e per gli acciai per carpenterie metalliche.

I tipi di acciai per cemento armato sono due: B450C e B450C.

L'acciaio per cemento armato B450C (laminato a caldo) è caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

 $-f_{y nom}$: 450 N/mm²;

- $f_{t nom}$: 540 N/mm².

Esso deve inoltre rispettare le seguenti caratteristiche:

CARATTERISTICHE	REQUISITI
Tensione caratteristica di snervamento fyk	≥ f _{y nom} (N/mm²)
Tensione caratteristica a carico massimo ftk	$\geq f_{t \ nom} (N/mm^2)$
(ft/fy)k	≥ 1,15
(TO) TY / K	< 1,35
(fy/fy nom)k	≤ 1,25
Allungamento (Agt)k	≥ 7,5 %
Diametro del mandrino per prove di piegamento a 90 ° e successivo	
raddrizzamento senza cricche:	
φ < 12 mm	4 φ
12 ≤ φ ≤ 16 mm	5 φ
per 16 < φ ≤ 25 mm	8 ф
per 25 < φ ≤ 40 mm	10 φ

L'acciaio per cemento armato B450A (trafilato a freddo), caratterizzato dai medesimi valori nominali delle tensioni di snervamento e rottura dell'acciaio B450C, deve rispettare i requisiti indicati nella tabella seguente:

CARATTERISTICHE	REQUISITI
Tensione caratteristica di snervamento fyk	≥ <i>f_{y nom}</i> (N/mm ²)
Tensione caratteristica a carico massimo ftk	$\geq f_{t \ nom} \ (N/mm^2)$
(ft/fy)k	≥ 1,05
(fy/fy nom)k	≤ 1,25
Allungamento (Agt)k	≥ 2,5 %
Diametro del mandrino per prove di piegamento a 90 ° e successivo	
raddrizzamento senza cricche:	
Per φ ≤ 10 mm	4 φ

11. L'accertamento delle proprietà meccaniche degli acciai deve essere condotto secondo le seguenti norme (paragrafo 11.3.2.3 Nuove norme tecniche):

UNI EN ISO 15630-1 - Acciaio per calcestruzzo armato e calcestruzzo armato precompresso. Metodi di prova. Parte 1: Barre, rotoli e fili per calcestruzzo armato;

UNI EN ISO 15630-2 - Acciaio per calcestruzzo armato e calcestruzzo armato precompresso. Metodi di prova. Parte 2: Reti saldate.

Per gli acciai deformati a freddo, ivi compresi i rotoli, le proprietà meccaniche devono essere determinate su provette mantenute per 60 minuti a 100 ± 10 °C e successivamente raffreddate in aria calma a temperatura ambiente.

In ogni caso, qualora lo snervamento non sia chiaramente individuabile, si deve sostituire f_{γ} , con $f_{(0,2)}$. La prova di piegamento e di raddrizzamento deve essere eseguita alla temperatura di 20 \pm 5 °C piegando la provetta a 90°, mantenendola poi per 30 minuti a 100 \pm 10 °C e procedendo, dopo raffreddamento in aria, al parziale raddrizzamento per almeno 20°. Dopo la prova il campione non deve presentare cricche.

La prova a trazione per le barre è prevista dalla norma UNI EN ISO 15630-1. I campioni devono essere prelevati in contraddittorio con l'appaltatore al momento della fornitura in cantiere. Gli eventuali trattamenti di invecchiamento dei provini devono essere espressamente indicati nel rapporto di prova.

La lunghezza dei campioni delle barre per poter effettuare sia la prova di trazione sia la prova di piegamento deve essere di almeno 100 cm (consigliato 150 cm).

Riguardo alla determinazione di A_{gt} , allungamento percentuale totale alla forza massima di trazione F_m , bisogna considerare che:

- se A_{gt} è misurato usando un estensimetro, A_{gt} deve essere registrato prima che il carico diminuisca più di 0,5% dal relativo valore massimo;
- se A_{qt} è determinato con il metodo manuale, A_{qt} deve essere calcolato con la seguente formula:

$$A_{at} = Ag + R_m/2000$$

Dove:

Ag è l'allungamento percentuale non-proporzionale al carico massimo F_m ;

 R_m è la resistenza a trazione (N/mm²).

La misura di Ag deve essere fatta su una lunghezza della parte calibrata di 100 mm a una distanza r_2 di almeno 50 mm o 2d (il più grande dei due) lontano dalla frattura. Questa misura può essere considerata come non valida se la distanza r_1 fra le ganasce e la lunghezza della parte calibrata è inferiore a 20 mm o d (il più grande dei due). La norma UNI EN 15630-1 stabilisce che in caso di contestazioni deve applicarsi il metodo manuale.

12. L'acciaio per cemento armato è generalmente prodotto in stabilimento sotto forma di barre o rotoli, reti o tralicci, per utilizzo diretto o come elementi di base per successive trasformazioni (paragrafo 11.3.2.4 Nuove norme tecniche).

Prima della fornitura in cantiere gli elementi di cui sopra possono essere saldati, presagomati (staffe, ferri piegati, ecc.) o preassemblati (gabbie di armatura, ecc.) a formare elementi composti direttamente utilizzabili in opera.

Tutti gli acciai per cemento armato devono essere ad aderenza migliorata, aventi cioè una superficie dotata di nervature o indentature trasversali, uniformemente distribuite sull'intera lunghezza, atte ad aumentarne l'aderenza al conglomerato cementizio.

La marcatura dei prodotti deve consentirne l'identificazione e la rintracciabilità.

La documentazione di accompagnamento delle forniture deve rispettare le prescrizioni stabilite dalle Norme tecniche, in particolare è necessaria per quei prodotti per i quali non sussiste l'obbligo della marcatura CE.

Le barre sono caratterizzate dal diametro della barra tonda liscia equipesante, calcolato nell'ipotesi che la densità dell'acciaio sia pari a 7,85 kg/dm³.

Gli acciai B450C possono essere impiegati in barre di diametro ϕ compreso tra 6 e 40 mm; per gli acciai B450A, invece, il diametro deve essere compreso tra 5 e 10 mm. L'uso di acciai forniti in rotoli è ammesso, senza limitazioni, per diametri fino a $\phi \le 16$ mm per B450C e fino a $\phi \le 10$ mm per B450A.

- 13. Le Nuove norme tecniche stabiliscono che la sagomatura e/o l'assemblaggio dei prodotti possono avvenire (paragrafo 11.3.2.4 Nuove norme tecniche):
 - in cantiere, sotto la vigilanza della direzione dei lavori;
 - in centri di trasformazione, solo se dotati dei requisiti previsti.

Nel primo caso, per cantiere si intende esplicitamente l'area recintata del cantiere, all'interno della quale il costruttore e la direzione dei lavori sono responsabili dell'approvvigionamento e lavorazione dei materiali, secondo le competenze e responsabilità che la legge da sempre attribuisce a ciascuno.

Al di fuori dell'area di cantiere, tutte le lavorazioni di sagomatura e/o assemblaggio devono avvenire esclusivamente in centri di trasformazione provvisti dei requisiti delle indicati dalle Nuove norme tecniche.

14. Gli acciai delle reti e dei tralicci elettrosaldati devono essere saldabili. L'interasse delle barre non deve superare i 330 mm.

I tralicci sono dei componenti reticolari composti con barre e assemblati mediante saldature.

Per le reti ed i tralicci costituiti con acciaio B450C gli elementi base devono avere diametro ϕ che rispetta la limitazione: 6 mm $\leq \phi \leq$ 16 mm. Per le reti ed i tralicci costituiti con acciaio B450A gli elementi base devono avere diametro ϕ che rispetta la limitazione: 5 mm $\leq \phi \leq$ 10 mm. Il rapporto tra i diametri delle barre componenti reti e tralicci deve essere: ϕ min ϕ Max ϕ 0,6.

I nodi delle reti devono resistere a una forza di distacco determinata in accordo con la norma UNI EN ISO 15630-2 pari al 25% della forza di snervamento della barra, da computarsi per quella di diametro maggiore sulla tensione di snervamento pari a 450 N/mm². Tale resistenza al distacco della saldatura del nodo deve essere controllata e certificata dal produttore di reti e di tralicci secondo le procedure di qualificazione di seguito riportate.

In ogni elemento di rete o traliccio le singole armature componenti devono essere della stessa classe di acciaio. Nel caso dei tralicci, è ammesso l'uso di elementi di collegamento tra correnti superiori e inferiori aventi superficie liscia perché realizzate con acciaio B450A oppure B450C saldabili.

In ogni caso, il produttore dovrà procedere alla qualificazione del prodotto finito, rete o traliccio.

15. Relativamente alla saldabilità, l'analisi chimica effettuata su colata e l'eventuale analisi chimica di controllo effettuata sul prodotto finito deve soddisfare le limitazioni riportate nella seguente tabella, dove il calcolo del carbonio equivalente C_{eq} è effettuato con la seguente formula:

$$C_{eq} = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$

in cui i simboli chimici denotano il contenuto degli elementi stessi espresso in percentuale.

Massimo contenuto di elementi chimici in %			
		Analisi di prodotto	Analisi di colata
Carbonio	C	0,24	0,22
Fosforo	P	0,055	0,050
Zolfo	S	0,055	0,050
Rame	Cu	0,85	0,80
Azoto	N	0,014	0,012
Carbonio equivalente	C _{eq}	0,52	0,50

È possibile eccedere il valore massimo di C dello 0,03% in massa, a patto che il valore del C_{eq} venga ridotto dello 0,02% in massa.

Contenuti di azoto più elevati sono consentiti in presenza di una sufficiente quantità di elementi che fissano l'azoto stesso.

16. La deviazione ammissibile per la massa nominale dei diametri degli elementi d'acciaio deve rispettare le seguenti tolleranze:

Diamtero nominale, (mm)	5 ≤ φ ≤ 8	8 < φ ≤ 40
Tolleranza in % sulla massa	± 6	± 4,5
nominale per metro		

- 17. Le prove di qualificazione e di verifica periodica, di cui ai successivi punti, devono essere ripetute per ogni prodotto avente caratteristiche differenti o realizzato con processi produttivi differenti, anche se provenienti dallo stesso stabilimento.
 - I rotoli devono essere soggetti a qualificazione separata dalla produzione in barre e dotati di marchiatura differenziata.
- 18. Ai fini della verifica della qualità, il laboratorio incaricato deve effettuare controlli saltuari, ad intervalli non superiori a tre mesi, prelevando tre serie di cinque campioni, costituite ognuna da cinque barre di uno stesso diametro, scelte con le medesime modalità contemplate nelle prove a carattere statistico, e provenienti da una stessa colata.

Il prelievo deve essere effettuato su tutti i prodotti qualificati ai sensi delle NTC, indipendentemente dall'etichettatura o dalla destinazione specifica. Su tali serie il laboratorio ufficiale deve effettuare le prove di resistenza e di duttilità.

Se i valori delle tensioni caratteristiche riscontrati risultano inferiori ai minimi per gli acciai B450C e B450A, il laboratorio incaricato deve darne comunicazione al servizio tecnico centrale e ripetere le prove di qualificazione solo dopo che il produttore ha eliminato le cause che hanno dato luogo al risultato insoddisfacente.

Qualora uno dei campioni sottoposti a prova di verifica della qualità non soddisfi i requisiti di duttilità per gli acciai B450C e B450A, il prelievo relativo al diametro di cui trattasi deve essere ripetuto. Il nuovo prelievo sostituisce quello precedente a tutti gli effetti. Un ulteriore risultato negativo comporta la ripetizione della qualificazione.

Le tolleranze dimensionali devono essere riferite alla media delle misure effettuate su tutti i saggi di ciascuna colata o lotto di produzione.

Su almeno un saggio per colata o lotto di produzione è calcolato il valore dell'area relativa di nervatura o di dentellatura e la composizione chimica.

- 19. Ai fini del controllo di qualità, le tolleranze dimensionali devono essere riferite alla media delle misure effettuate su tutti i saggi di ciascuna colata o lotto di produzione.
- 20. I produttori già qualificati possono richiedere, di loro iniziativa, di sottoporsi a controlli su singole colate o lotti di produzione, eseguiti a cura di un laboratorio ufficiale prove. Le colate o lotti di produzione sottoposti a controllo devono essere cronologicamente ordinati nel quadro della produzione globale.

I controlli consistono nel prelievo, per ogni colata e lotto di produzione e per ciascun gruppo di diametri da essi ricavato, di un numero n di campioni, non inferiore a dieci, sui quali si effettuano le prove di verifica di qualità per gli acciai in barre, reti e tralicci elettrosaldati.

Le tensioni caratteristiche di snervamento e rottura devono essere calcolate con le espressioni per i controlli sistematici in stabilimento per gli acciai in barre e rotoli, nelle quali n è il numero dei campioni prelevati dalla colata.

- 21. I controlli nei centri di trasformazione sono obbligatori e devono essere effettuati:
 - in caso di utilizzo di barre, un controllo ogni 90 t della stessa classe di acciaio proveniente dallo stesso stabilimento, anche se con forniture successive, su cui si effettuano prove di trazione e piegamento;
 - in caso di utilizzo di rotoli, un controllo ogni 30 t per ogni tipologia di macchina e per ogni diametro lavorato della stessa classe di acciaio proveniente dallo stesso stabilimento, anche se con forniture successive, su cui si effettuano prove di trazione e piegamento ed una verifica dell'area relativa di nervatura o di dentellatura, secondo il metodo geometrico di cui alla seconda parte del § 11.3.2.10.4 delle NTC; il campionamento deve garantire che, nell'arco temporale di 3 mesi, vengano controllati tutti i fornitori e

tutti i diametri per ogni tipologia di acciaio utilizzato e tutte le macchine raddrizzatrici presenti nel Centro di trasformazione.

Ogni controllo è costituito da 1 prelievo, ciascuno costituito da 3 campioni di uno stesso diametro sempre che il marchio e la documentazione di accompagnamento dimostrino la provenienza del materiale da uno stesso stabilimento nonché la stessa classe di acciaio.

Qualora non si raggiungano le quantità sopra riportate deve essere effettuato almeno un controllo per ogni giorno di lavorazione.

Tutte le prove suddette, che vanno eseguite dopo le lavorazioni e le piegature, devono riguardare la resistenza, l'allungamento, il piegamento e l'aderenza.

22. I controlli di accettazione in cantiere sono obbligatori e devono essere effettuati, entro 30 giorni dalla data di consegna del materiale, a cura di un laboratorio di cui all'art. 59 del DPR n. 380/2001.

Essi devono essere eseguiti in ragione di 3 campioni ogni 30 t di acciaio impiegato della stessa classe proveniente dallo stesso stabilimento o Centro di trasformazione, anche se con forniture successive.

I valori di resistenza e allungamento di ciascun campione da eseguirsi comunque prima della messa in opera del prodotto riferiti a uno stesso diametro devono essere compresi fra i valori massimi e minimi riportati nella seguente tabella relativa alle barre:

Caratteristica	Valore limite	NOTE
fy minimo	425 N/mm ²	per acciai B450A e B450C
fy massimo	572 N/mm ²	per acciai B450A e B450C
Agt minimo	≥ 6.0%	per acciai B450C
Agt minimo	≥ 2.0%	per acciai B450A
Rottura/snervamento	$1,13 \le ft/fy \le 1,37$	per acciai B450C
Rottura/snervamento	ft/fy ≥ 1.03	per acciai B450A
Piegamento/raddrizzamento	assenza di cricche	per tutti

Qualora il risultato non sia conforme a quello dichiarato dal fabbricante, il direttore dei lavori dispone la ripetizione della prova su 6 ulteriori campioni dello stesso diametro.

Ove anche da tale accertamento i limiti dichiarati non risultino rispettati, il controllo deve estendersi, previo avviso al fabbricante nel caso di fornitura di acciaio non lavorato presso un centro di trasformazione, o al centro di trasformazione, a 25 campioni, applicando ai dati ottenuti la formula generale valida per controlli sistematici in stabilimento (Cfr. § 11.3.2.10.1.3 delle NTC).

L'ulteriore risultato negativo comporta l'inidoneità della partita e la trasmissione dei risultati al fabbricante, nel caso di fornitura di acciaio non lavorato presso un centro di trasformazione, o al centro di trasformazione, che sarà tenuto a farli inserire tra i risultati dei controlli statistici della sua produzione. Analoghe norme si applicano ai controlli di duttilità, aderenza e distacco al nodo saldato: un singolo risultato negativo sul primo prelievo comporta l'esame di sei nuovi campioni dello stesso diametro, un ulteriore singolo risultato negativo comporta l'inidoneità della partita.

23. Il prelievo dei campioni di barre d'armatura deve essere effettuato a cura del direttore dei lavori o di un tecnico di sua fiducia che deve assicurare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove al laboratorio ufficiale prove incaricato siano effettivamente quelli da lui prelevati.

Qualora la fornitura di elementi sagomati o assemblati provenga da un centro di trasformazione, il direttore dei lavori, dopo essersi accertato preliminarmente che il suddetto centro di trasformazione sia in possesso di tutti i requisiti previsti dalle Nuove norme tecniche, può recarsi presso il medesimo centro di trasformazione ed effettuare in stabilimento tutti i necessari controlli. In tal caso, il prelievo dei campioni deve essere effettuato dal direttore tecnico del centro di trasformazione secondo le disposizioni del direttore dei lavori. Quest'ultimo deve assicurare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove al laboratorio ufficiale incaricato siano effettivamente quelli da lui prelevati, nonché sottoscrivere la relativa richiesta di prove.

La domanda di prove al laboratorio ufficiale autorizzato deve essere sottoscritta dal direttore dei lavori e deve contenere indicazioni sulle strutture interessate da ciascun prelievo.

In caso di mancata sottoscrizione della richiesta di prove da parte del direttore dei lavori, le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi delle norme tecniche e di ciò deve essere fatta esplicita menzione sul certificato stesso.

Art. 95 - Malta per iniezioni

- 1. La malta deve essere fluida e stabile con minimo ritiro e adeguata resistenza e non deve contenere agenti aggressivi. Deve essere composta da cemento, acqua ed eventuali additivi. Elementi inerti (per esempio farina di sabbia) possono impiegarsi solo per guaine di dimensioni superiori a 12 cm, nel rapporto in peso inerti/cemento < 25%.
 - Gli additivi non devono contenere ioni aggressivi (cloruri, solfati, nitrati, ecc.) e comunque non produrre un aumento di ritiro.
 - Il rapporto acqua/cemento, da determinare sperimentalmente per ogni tipo di cemento, deve essere il minore possibile, compatibilmente con la fluidità richiesta e comunque non deve superare 0,40 e 0,38 se con additivi e, inoltre, deve essere tale che la quantità d'acqua di essudamento alla superficie della pasta, in condizioni di riposo sia inferiore al 2%.
- 2. Possono impiegarsi resine sintetiche o bitume o altro materiale, solo dopo averne dimostrato la validità mediante idonea documentazione sperimentale.
- 3. La malta deve essere sufficientemente fluida perché la si possa correttamente iniettare nei canali. Si consiglia di controllare la fluidità della malta accertando che il tempo misurato al cono di Marsh sia compreso fra 13 e 25 secondi.
- 4. La resistenza a trazione per flessione a sette giorni deve essere maggiore o uguale a 4 N/mm². Il tempo d'inizio della presa a 30 °C deve essere superiore a tre ore. Il ritiro a 28 giorni non deve superare 2,8 mm/m.

Art. 96 - Acciaio per strutture metalliche

- 1. Per la realizzazione di strutture metalliche e di strutture composte, si dovranno utilizzare acciai conformi alle norme armonizzate della serie UNI EN 10025-1, UNI EN 10210-1 e UNI EN10219-1, recanti la marcatura CE, cui si applica il sistema di attestazione della conformità 2+ e per i quali sia disponibile una norma europea armonizzata il cui riferimento sia pubblicato su GUUE. Al termine del periodo di coesistenza il loro impiego nelle opere è possibile soltanto se corredati della "Dichiarazione di Prestazione" e della Marcatura CE, prevista al Capo II del Regolamento UE 305/2011.
 - Solo per i prodotti per cui non sia applicabile la marcatura CE si rimanda a quanto specificato al punto B del § 11.1 delle NTC 2018 e si applica la procedura di cui ai § 11.3.1.2 e § 11.3.4.11.1. delle medesime norme.
- 2. Per l'esecuzione di parti in getti si devono impiegare acciai conformi alla norma UNI EN 10293. Quando tali acciai debbano essere saldati, valgono le stesse limitazioni di composizione chimica previste per gli acciai laminati di resistenza similare.
- 3. Gli acciai per strutture saldate, oltre a soddisfare le condizioni generali, devono avere composizione chimica conforme a quanto riportato nelle norme europee armonizzate applicabili previste dalle Nuove norme tecniche.
 - La saldatura degli acciai dovrà avvenire con uno dei procedimenti all'arco elettrico codificati secondo la norma UNI EN ISO 4063. È ammesso l'uso di procedimenti diversi purché sostenuti da adeguata documentazione teorica e sperimentale.
 - Tutti i procedimenti di saldatura dovranno essere qualificati secondo la norma UNI EN ISO 15614-1. Le durezze eseguite sulle macrografie non dovranno essere superiori a 350 HV30.
 - Per la saldatura ad arco di prigionieri di materiali metallici (saldatura a innesco mediante sollevamento e saldatura a scarica di condensatori a innesco sulla punta), si applica la norma UNI EN ISO 14555. Valgono, perciò, i requisiti di qualità di cui al prospetto A1 dell'appendice A della stessa norma.
 - Le prove di qualifica dei saldatori, degli operatori e dei procedimenti dovranno essere eseguite da un ente terzo. In assenza di prescrizioni in proposito, l'ente sarà scelto dal costruttore secondo criteri di competenza e di indipendenza.
 - Sono richieste caratteristiche di duttilità, snervamento, resistenza e tenacità in zona fusa e in zona termica alterata non inferiori a quelle del materiale base.
 - Nell'esecuzione delle saldature dovranno, inoltre, essere rispettate le norme UNI EN 1011-1 e UNI EN 1011-2 per gli acciai ferritici, e UNI EN 1011-3 per gli acciai inossidabili. Per la preparazione dei lembi si applicherà, salvo casi particolari, la norma UNI EN ISO 9692-1.
 - Oltre alle prescrizioni applicabili per i centri di trasformazione, il costruttore deve corrispondere a

particolari requisiti.

In relazione alla tipologia dei manufatti realizzati mediante giunzioni saldate, il costruttore deve essere certificato secondo la norma UNI EN ISO 3834 (parti 2, 3 e 4). La certificazione dell'azienda e del personale dovrà essere operata da un ente terzo scelto, in assenza di prescrizioni, dal costruttore secondo criteri di indipendenza e di competenza.

- 4. I bulloni sono organi di collegamento tra elementi metallici, introdotti in fori opportunamente predisposti, composti dalle seguenti parti:
 - gambo, completamente o parzialmente filettato con testa esagonale (vite);
 - dado di forma esagonale, avvitato nella parte filettata della vite;
 - rondella (o rosetta) del tipo elastico o rigido.

In presenza di vibrazioni dovute a carichi dinamici, per evitare lo svitamento del dado, vengono applicate rondelle elastiche oppure dei controdadi.

Agli assiemi Vite/Dado/Rondella impiegati nelle giunzioni 'non precaricate' si applica quanto specificato al punto A del § 11.1 delle NTC 2018 in conformità alla norma europea armonizzata UNI EN 15048-1.

In alternativa anche gli assiemi ad alta resistenza conformi alla norma europea armonizzata UNI EN 14399-1 sono idonei per l'uso in giunzioni non precaricate.

Viti, dadi e rondelle, in acciaio, devono essere associate come nella seguente tabella:

Viti	Dadi	Rondelle	Riferimento
Classe di resistenza UNI EN ISO 898-1	Classe di resistenza UNI EN ISO 898-2	Durezza	
4.6	4.5.6.		
4.8	4;5;6 oppure 8		
5.6	F. C	100 HV min.	
5.8	5; 6 oppure 8		UNI EN 15048-1
6.8	6 oppure 8		
8.8	8 oppure 10	100 HV min oppure	1
10.9	10 oppure 12	300 HV min.	

Gli elementi di collegamento strutturali ad alta resistenza adatti al precarico devono soddisfare i requisiti di cui alla norma europea armonizzata UNI EN 14399-1 e recare la relativa marcatura CE, con le specificazioni per i materiali e i prodotti per uso strutturale.

- 5. Le unioni con i chiodi sono rare perché di difficile esecuzione (foratura del pezzo, montaggio di bulloni provvisori, riscaldamento dei chiodi e successivo alloggiamento e ribaditura), a differenza delle unioni con bulloni più facili e veloci da eseguire. Tuttavia, non è escluso che le chiodature possano essere impiegate in particolari condizioni, come ad esempio negli interventi di restauro di strutture metalliche del passato.
- 6. Nel caso si utilizzino connettori a piolo, l'acciaio deve essere idoneo al processo di formazione dello stesso e compatibile per saldatura con il materiale costituente l'elemento strutturale interessato dai pioli stessi. Esso deve avere le seguenti caratteristiche meccaniche:
 - allungamento percentuale a rottura ≥ 12;
 - rapporto ft / fy \geq 1,2.

Quando i connettori vengono uniti alle strutture con procedimenti di saldatura speciali, senza metallo d'apporto, essi devono essere fabbricati con acciai la cui composizione chimica soddisfi le limitazioni seguenti:

 $C \le 0.18\%$, Mn $\le 0.9\%$, S $\le 0.04\%$, P $\le 0.05\%$.

- 7. Per l'impiego di acciai inossidabili, si dovranno utilizzare acciai conformi alle norme armonizzate UNI EN 10088-4 e UNI EN 10088-5, recanti la Marcatura CE.
- 8. In zona sismica, l'acciaio costituente le membrature, le saldature e i bulloni deve essere conforme ai requisiti riportati nelle norme sulle costruzioni in acciaio.

Per le zone dissipative si devono applicare le seguenti regole addizionali:

- per gli acciai da carpenteria il rapporto fra i valori caratteristici della tensione di rottura f_{tk} (nominale) e la tensione di snervamento f_{yk} (nominale) deve essere maggiore di 1,10 e l'allungamento a rottura A5, misurato su provino standard, deve essere non inferiore al 20%;
- la tensione di snervamento media $f_{y,media}$ deve risultare $f_{y,media} \le 1,2 \; f_{yk}$ per acciaio S235 e S275, oppure ad 1,10 fy,k per acciai S355 S420 ed S460;
- i collegamenti bullonati devono essere realizzati con bulloni ad alta resistenza di classe 8.8 o 10.9.
- 9. Per quanto concerne i controlli negli stabilimenti di produzione, sono prodotti qualificabili sia quelli raggruppabili per colata che quelli per lotti di produzione.
 - Ai fini delle prove di qualificazione e di controllo di cui ai paragrafi successivi), i prodotti nell'ambito di ciascuna gamma merceologica, sono raggruppabili per gamme di spessori così come definito nelle norme europee armonizzate UNI EN 10025-1, UNI EN 10210-1, UNI EN 10219-1, UNI EN 10088-4 e UNI EN 10088-5. Agli stessi fini, ove previsto dalle suddette norme europee armonizzate, sono raggruppabili anche i diversi gradi di acciai (JR, J0, J2, K2), sempre che siano garantite per tutti le caratteristiche del grado superiore del raggruppamento.
 - Un lotto di produzione è costituito da un quantitativo compreso fra 30 e 120 t, o frazione residua, per ogni profilo, qualità e gamma di spessore, senza alcun riferimento alle colate che sono state utilizzate per la loro produzione. Per quanto riguarda i profilati cavi, il lotto di produzione corrisponde all'unità di collaudo come definita dalle norme europee armonizzate UNI EN 10210-1 e UNI EN 10219-1 in base al numero dei pezzi.
- 10. Ai fini della qualificazione, fatto salvo quanto prescritto ed obbligatoriamente applicabile per i prodotti di cui a norme armonizzate in regime di cogenza, il fabbricante deve predisporre una idonea documentazione sulle caratteristiche chimiche, ove pertinenti, e meccaniche riscontrate per quelle qualità e per quei prodotti che intende qualificare.
 - La documentazione deve essere riferita ad una produzione relativa ad un periodo di tempo di almeno sei mesi e ad un quantitativo di prodotti tale da fornire un quadro statisticamente significativo della produzione stessa e comunque \geq 500 t oppure ad un numero di colate o di lotti \geq 25.
 - Tale documentazione di prova deve basarsi sui dati sperimentali rilevati dal fabbricante, integrati dai risultati delle prove di qualificazione effettuate a cura di un laboratorio di cui all'art. 59, comma 1, del DPR n. 380/2001, incaricato dal Servizio Tecnico Centrale su proposta del fabbricante stesso.
 - Le prove di qualificazione devono riferirsi a ciascun tipo di prodotto, inteso individuato da gamma merceologica, classe di spessore e qualità di acciaio, ed essere relative al rilievo dei valori caratteristici; per ciascun tipo verranno eseguite almeno 30 prove su 30 saggi appositamente prelevati da almeno 3 lotti diversi.
 - La documentazione del complesso delle prove meccaniche deve essere elaborata in forma statistica calcolando, per lo snervamento e la resistenza al carico massimo, il valore medio, lo scarto quadratico medio e il relativo valore caratteristico delle corrispondenti distribuzioni di frequenza.
- 11. Il servizio di controllo interno della qualità dello stabilimento fabbricante deve predisporre un'accurata procedura atta a mantenere sotto controllo con continuità tutto il ciclo produttivo.
 - Per ogni colata, o per ogni lotto di produzione, contraddistinti dal proprio numero di riferimento, viene prelevato dal prodotto finito un saggio per colata e comunque un saggio ogni 80 t oppure un saggio per lotto e comunque un saggio ogni 40 t o frazione; per quanto riguarda i profilati cavi, il lotto di produzione è definito dalle relative norme UNI di prodotto, in base al numero dei pezzi.
 - Dai saggi di cui sopra verranno ricavati i provini per la determinazione delle caratteristiche chimiche e meccaniche previste dalle norme europee armonizzate UNI EN 10025-1, UNI EN 10210-1, UNI EN 10219-1, UNI EN 10088-4 e UNI EN 10088-5 rilevando il quantitativo in tonnellate di prodotto finito cui la prova si riferisce.
 - Per quanto concerne fy e ft i dati singoli raccolti, suddivisi per qualità e prodotti (secondo le gamme dimensionali) vengono riportati su idonei diagrammi per consentire di valutare statisticamente nel tempo i risultati della produzione rispetto alle prescrizioni delle presenti norme tecniche.
 - I restanti dati relativi alle caratteristiche chimiche, di resilienza e di allungamento vengono raccolti in tabelle e conservati, dopo averne verificato la rispondenza alle norme UNI EN 10025-1, UNI EN 10210-1 UNI EN 10219-1, UNI EN 10088-4 e UNI EN 10088-5 per quanto concerne le caratteristiche chimiche e, per quanto concerne resilienza e allungamento, alle prescrizioni di cui alle tabelle delle corrispondenti norme europee

della serie UNI EN 10025 oppure delle tabelle di cui alle norme europee UNI EN 10210 ed UNI EN 10219 per i profilati cavi ed alle UNI EN 10088-4 e UNI EN 10088-5 per gli acciai inossidabili.

È cura e responsabilità del fabbricante individuare, a livello di colata o di lotto di produzione, gli eventuali risultati anomali che portano fuori limiti la produzione e di provvedere ad ovviarne le cause. I diagrammi sopra indicati devono riportare gli eventuali dati anomali.

I prodotti non conformi non possono essere impiegati ai fini strutturali, previa punzonatura di annullamento, tenendone esplicita nota nei registri.

La documentazione raccolta presso il controllo interno di qualità dello stabilimento produttore deve essere conservata a cura del fabbricante.

12. Negli stabilimenti di produzione è prevista una verifica periodica di qualità.

Il laboratorio incaricato deve effettuare periodicamente a sua discrezione e senza preavviso, almeno ogni sei mesi, una visita presso lo stabilimento produttore, nel corso della quale su tre tipi di prodotto, scelti di volta in volta tra qualità di acciaio, gamma merceologica e classe di spessore, effettuerà per ciascun tipo tipo non meno di quindici prove a trazione, sia da saggi prelevati direttamente dai prodotti, sia da saggi appositamente accantonati dal fabbricante in numero di almeno due per colata o lotto di produzione, relativa alla produzione intercorsa dalla visita precedente.

Inoltre, il laboratorio incaricato deve effettuare le altre prove previste (resilienza e analisi chimiche) sperimentando su provini ricavati da tre campioni per ciascun tipo sopraddetto. Infine, si controlla che siano rispettati i valori minimi prescritti per la resilienza e quelli massimi per le analisi chimiche.

Nel caso in cui i risultati delle prove siano tali per cui viene accertato che i limiti prescritti non sono rispettati, vengono prelevati altri saggi (nello stesso numero) e ripetute le prove. Ove i risultati delle prove, dopo ripetizione, fossero ancora insoddisfacenti, il laboratorio incaricato sospende le verifiche della qualità dandone comunicazione al servizio tecnico centrale e ripete la qualificazione dopo che il produttore ha ovviato alle cause che hanno dato luogo al risultato insoddisfacente.

Per quanto concerne le prove di verifica periodica della qualità per gli acciai, con caratteristiche comprese tra i tipi S235 e S355, si utilizza un coefficiente di variazione pari all' 8%.

Per gli acciai con snervamento o rottura superiore al tipo S355 si utilizza un coefficiente di variazione pari al 6%. Per tali acciai la qualificazione è ammessa anche nel caso di produzione non continua nell'ultimo semestre e anche nei casi in cui i quantitativi minimi previsti non siano rispettati, permanendo tutte le altre regole relative alla qualificazione.

- 13. Negli stabilimenti soggetti a controlli sistematici, i produttori possono richiedere di loro iniziativa di sottoporsi a controlli, eseguiti a cura di un laboratorio ufficiale, su singole colate di quei prodotti che, per ragioni produttive, non possono ancora rispettare le condizioni quantitative minime per qualificarsi. Le prove da effettuare sono quelle relative alle norme europee armonizzate UNI EN 10025-1, UNI EN 10210-1, UNI EN 10219-1, UNI EN 10088-4 e UI EN 10088-5 e i valori da rispettare sono quelli di cui alle tabelle delle corrispondenti norme europee della serie UNI EN 10025, ovvero delle tabelle di cui alle norme europee della serie UNI EN 10210 e UNI EN 10219 per i profilati cavi ed alle UNI EN 100884-4 e UNI EN 100884-5 per gli acciai inossidabili.
- 14. Si definiscono centri di produzione di elementi in acciaio i centri di produzione di lamiere grecate e profilati formati a freddo, le officine per la produzione di bulloni e chiodi, le officine di produzione di elementi strutturali in serie. Ai produttori di elementi tipologici in acciaio si applicano le disposizioni previste al §11.3.4.1 ed al § 11.3.1.7 delle NTC per i centri di trasformazione. Agli elementi seriali da essi fabbricati si applicano le disposizioni di cui al punto 11.1. delle medesime norme.

Per le lamiere grecate da impiegare in solette composte, il produttore deve effettuare una specifica sperimentazione al fine di determinare la resistenza a taglio longitudinale di progetto della lamiera grecata. La sperimentazione e l'elaborazione dei risultati sperimentali devono essere conformi alle prescrizioni dell'appendice B3 alla norma UNI EN 1994-1. Questa sperimentazione e l'elaborazione dei risultati sperimentali devono essere eseguite da laboratorio ufficiale di riconosciuta competenza. Il rapporto di prova deve essere trasmesso in copia al servizio tecnico centrale e deve essere riprodotto integralmente nel catalogo dei prodotti.

I documenti che accompagnano ogni fornitura in cantiere devono indicare gli estremi della certificazione del sistema di gestione della qualità del prodotto che sovrintende al processo di trasformazione e, inoltre, ogni fornitura in cantiere deve essere accompagnata da copia della dichiarazione sopra citata.

Gli utilizzatori dei prodotti e/o il direttore dei lavori sono tenuti a verificare quanto sopra indicato e a rifiutare le eventuali forniture non conformi.

I controlli in officina devono essere effettuati in ragione di almeno 2 prelievi ogni 10 t di acciaio della stessa categoria, proveniente dallo stesso stabilimento, anche se acquisito con forniture diverse, avendo cura di prelevare di volta in volta i campioni da tipologie di prodotti diverse.

- 15. Le Nuove norme tecniche definiscono centri di prelavorazione o di servizio quegli impianti che ricevono dai produttori di acciaio elementi base (prodotti lunghi e/o piani) e realizzano elementi singoli prelavorati che vengono successivamente utilizzati dalle officine di produzione di carpenteria metallica che realizzano, a loro volta, strutture complesse nell'ambito delle costruzioni.
 - In generale, il centro di prelavorazione deve rispettare le prescrizioni relative ai centri di trasformazione, nonché, relativamente ai controlli ed alla relativa certificazione, quanto stabilito nel successivo comma per le officine per la produzione di carpenterie metalliche.
- 16. Le officine per la produzione di carpenterie metalliche oltre a rispettare quanto previsto per i centri di trasformazione sono soggette a controlli obbligatori, effettuati a cura del direttore tecnico dell'officina. Detti controlli in officina devono essere effettuati in ragione di almeno 1 prova ogni 30 t di acciaio della stessa categoria, proveniente dallo stesso stabilimento, anche se acquisito in tempi diversi, avendo cura di prelevare di volta in volta i campioni da tipi di prodotti o spessori diversi.
 - I dati sperimentali ottenuti devono soddisfare le prescrizioni di cui alle tabelle delle corrispondenti norme europee armonizzate della serie UNI EN 10025 oppure delle tabelle di cui al § 11.3.4.1 delle NTC per i profilati cavi per quanto concerne l'allungamento e la resilienza, nonché delle norme europee armonizzate della serie UNI EN 10025, UNI EN 10210-1 e UNI EN 10219-1 per le caratteristiche chimiche.

Deve inoltre controllarsi che le tolleranze di fabbricazione rispettino i limiti indicati nelle norme europee applicabili sopra richiamate e che quelle di montaggio siano entro i limiti indicati dal progettista. In mancanza, deve essere verificata la sicurezza con riferimento alla nuova geometria.

Il direttore tecnico dell'officina deve curare la registrazione di tutti i risultati delle prove di controllo interno su apposito registro, di cui dovrà essere consentita la visione a quanti ne abbiano titolo.

Tutte le forniture provenienti da un'officina devono essere accompagnate dalla seguente documentazione: a) da dichiarazione, su documento di trasporto, degli estremi dell'Attestato di "Denuncia dell'attività del centro di trasformazione", rilasciato dal Servizio Tecnico Centrale, recante il logo o il marchio del centro di trasformazione;

- b) dall'attestazione inerente l'esecuzione delle prove di controllo interno di cui ai paragrafi specifici relativi a ciascun prodotto, fatte eseguire dal Direttore Tecnico del centro di trasformazione, con l'indicazione dei giorni nei quali la fornitura è stata lavorata;
- c) da dichiarazione contenente i riferimenti alla documentazione fornita dal fabbricante in relazione ai prodotti utilizzati nell'ambito della specifica fornitura. Copia della documentazione fornita.
- 17. Le officine per la produzione di bulloni e chiodi devono rispettare le prescrizioni relative ai centri di trasformazione, nonché quanto riportato al presente comma.
 - I produttori di bulloni e chiodi per carpenteria metallica devono dotarsi di un sistema di gestione della qualità del processo produttivo per assicurare che il prodotto abbia i requisiti previsti dalle presenti norme e che tali requisiti siano costantemente mantenuti fino alla posa in opera.
 - Il sistema di gestione della qualità del prodotto che sovrintende al processo di fabbricazione deve essere predisposto in coerenza con la norma UNI EN ISO 9001 e certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con le norme UNI CEI EN ISO/IEC 17021-1.
 - I controlli in stabilimento sono obbligatori e devono essere effettuati a cura del Direttore Tecnico dell'officina in numero di almeno 1 prova a trazione su bullone o chiodo ogni 1000 prodotti.
 - I documenti che accompagnano ogni fornitura in cantiere di bulloni o chiodi da carpenteria devono indicare gli estremi dell'attestato dell'avvenuto deposito della documentazione presso il Servizio Tecnico Centrale.
- 18. I controlli di accettazione in cantiere, da eseguirsi presso un laboratorio ufficiale, sono obbligatori per tutte le forniture di elementi e/o prodotti, qualunque sia la loro provenienza e la tipologia di qualificazione. Il prelievo dei campioni va eseguito alla presenza del Direttore dei Lavori o di un tecnico di sua fiducia che provvede alla redazione di apposito verbale di prelievo ed alla identificazione dei provini mediante sigle, etichettature indelebili, ecc.; la certificazione effettuata dal laboratorio prove materiali deve riportare

riferimento a tale verbale. La richiesta di prove al laboratorio incaricato deve essere sempre firmata dal Direttore dei Lavori, che rimane anche responsabile della trasmissione dei campioni.

A seconda delle tipologie di materiali pervenute in cantiere il Direttore dei Lavori deve effettuare i seguenti controlli:

- Elementi di Carpenteria Metallica: 3 prove ogni 90 tonnellate; il numero di campioni, prelevati e provati nell'ambito di una stessa opera, non può comunque essere inferiore a tre. Per opere per la cui realizzazione è previsto l'impiego di quantità di acciaio da carpenteria non superiore a 2 tonnellate, il numero di campioni da prelevare è individuato dal Direttore dei Lavori, che terrà conto anche della complessità della struttura.
- Lamiere grecate e profili formati a freddo: 3 prove ogni 15 tonnellate; il numero di campioni, prelevati e provati nell'ambito di una stessa opera,, non può comunque essere inferiore a tre. Per opere per la cui realizzazione è previsto l'impiego di una quantità di lamiere grecate o profili formati a freddo non superiore a 0.5 tonnellate, il numero di campioni da prelevare è individuato dal Direttore dei Lavori.
- Bulloni e chiodi: 3 campioni ogni 1500 pezzi impiegati; il numero di campioni, prelevati e provati nell'ambito di una stessa opera, non può comunque essere inferiore a tre. Per opere per la cui realizzazione è previsto l'impiego di una quantità di pezzi non superiore a 100, il numero di campioni da prelevare è individuato dal Direttore dei Lavori.
- Giunzioni meccaniche: 3 campioni ogni 100 pezzi impiegati; il numero di campioni, prelevati e provati nell'ambito di una stessa opera, non può comunque essere inferiore a tre. Per opere per la cui realizzazione è previsto l'impiego di una quantità di pezzi non superiore a 10, il numero di campioni da prelevare è individuato dal Direttore dei Lavori.

Per quanto non specificato dal presente comma si faccia riferimento al paragrafo 11.3.4.11.3 delle NTC.

19. Le norme di riferimento sono:

a. esecuzione

UNI ENV 1090-1 - Esecuzione di strutture di acciaio e alluminio. Requisiti per la valutazione di conformità dei componenti strutturali;

UNI ENV 1090-2 - Esecuzione di strutture di acciaio e alluminio. Requisiti tecnici per strutture in acciaio; UNI EN ISO 377 - Acciaio e prodotti di acciaio. Prelievo e preparazione dei saggi e delle provette per prove meccaniche;

b. elementi di collegamento

UNI EN ISO 898-1 - Caratteristiche meccaniche degli elementi di collegamento di acciaio. Viti e viti prigioniere;

UNI EN 20898-7 - Caratteristiche meccaniche degli elementi di collegamento. Prova di torsione e coppia minima di rottura per viti con diametro nominale da 1 mm a 10 mm;

UNI EN ISO 4016 - Viti a testa esagonale con gambo parzialmente filettato. Categoria C;

c. profilati cavi

UNI EN 10210-1 - Profilati cavi finiti a caldo di acciai non legati e a grano fine per impieghi strutturali. Condizioni tecniche di fornitura;

UNI EN 10210-2 - Profilati cavi finiti a caldo di acciai non legati e a grano fine per impieghi strutturali; UNI EN 10219-1 - Profilati cavi formati a freddo di acciai non legati e a grano fine per strutture saldate. Condizioni tecniche di fornitura;

UNI EN 10219-2 - Profilati cavi formati a freddo di acciai non legati e a grano fine per strutture saldate - Tolleranze, dimensioni e caratteristiche del profilo;

d. condizioni tecniche di fornitura

UNI EN 10025-1 - Prodotti laminati a caldo di acciai per impieghi strutturali. Parte 1: Condizioni tecniche generali di fornitura;

UNI EN 10025-2 - Prodotti laminati a caldo di acciai per impieghi strutturali. Parte 2: Condizioni tecniche di fornitura di acciai non legati per impieghi strutturali;

UNI EN 10025-3 - Prodotti laminati a caldo di acciai per impieghi strutturali. Parte 3: Condizioni tecniche di fornitura di acciai per impieghi strutturali saldabili a grano fine allo stato normalizzato/normalizzato laminato;

UNI EN 10025-4 - Prodotti laminati a caldo di acciai per impieghi strutturali. Parte 4: Condizioni tecniche di fornitura di acciai per impieghi strutturali saldabili a grano fine ottenuti mediante laminazione

termomeccanica;

UNI EN 10025-5 - Prodotti laminati a caldo di acciai per impieghi strutturali. Parte 5: Condizioni tecniche di fornitura di acciai per impieghi strutturali con resistenza migliorata alla corrosione atmosferica;

UNI EN 10025-6 - Prodotti laminati a caldo di acciai per impieghi strutturali. Parte 6: Condizioni tecniche di fornitura per prodotti piani di acciaio per impieghi strutturali ad alto limite di snervamento, bonificati.

UNI EN 100884-4 - Acciai inossidabili: Condizioni tecniche di fornitura dei fogli, delle lamiere e dei nastri di acciaio resistente alla corrosione per impieghi nelle costruzioni;

UNI EN 100884-5 - Acciai inossidabili: Condizioni tecniche di fornitura delle barre, vergelle, filo, profilati e prodotti trasformati a freddo di acciaio resistente alla corrosione per impieghi nelle costruzioni.

Art. 97 - Rete metallica doppia torsione

- 1. Rete metallica a doppia torsione a maglia esagonale tipo 8x10, tessuta con trafilato di acciaio avente un diametro pari a 3,00 mm, conforme alla norma UNI EN 10223-3 per le caratteristiche meccaniche e alla UNI EN 10218-2 per le tolleranze sui diametri.
- 2. Carico di rottura del trafilato di acciaio compreso fra 350 e 550 N/mm² e allungamento minimo pari al 10%, galvanizzato con lega eutettica di Zinco 5% Alluminio in conformità a UNI EN 10244-2 Classe A.
- 3. La rete dovrà avere maglie uniformi di dimensioni 8x10 cm, dovrà avere resistenza nominale a trazione di 50 KN/m, dovrà essere esente da strappi e dovrà avere il perimetro rinforzato con filo di diametro maggiore rispetto a quello delle rete stessa, inserito nella trama della rete o ad essa agganciato meccanicamente in modo da impedire lo sfilamento e dare sufficiente garanzia di robustezza.

Art. 98 - Rete metallica per gabbioni 8x10 cm

- 1. I gabbioni metallici dovranno essere fabbricati con rete metallica a doppia torsione conforme alla norma UNI EN 10223-3 per le caratteristiche meccaniche ed alla UNI EN 10218 per le tolleranze sui diametri.
- 2. Il filo costituente la rete metallica dovrà essere di acciaio, con diametro minimo di 3 mm, dovrà essere sottoposto a zincatura forte conforme alla norma UNI EN 10244-2 classe A, (Circolare C.S.LL.PP. n. 2078/1962) oppure essere rivestito in lega ZN-AL (5%) (minimo 220 g/m²).

 La tipologia del filo sottoposto a zincatura forte in alcune opere speciali, qualora indicato in progetto, avrà
 - anche un rivestimento plastico in PVC o PE.
- 3. La rete costituente gli elementi dovrà avere maglie uniformi di dimensioni 8x10 cm, dovrà avere resistenza nominale a trazione di 50 KN/m, dovrà essere esente da strappi e dovrà avere il perimetro rinforzato con filo di diametro maggiore rispetto a quello delle rete stessa, inserito nella trama della rete o ad essa agganciato meccanicamente in modo da impedire lo sfilamento e dare sufficiente garanzia di robustezza.
- 4. Le dimensioni trasversali della scatola costituente i gabbioni (altezza e larghezza) dovranno essere pari a 0,50x1,00 m oppure a 1,00x1,00 m. Per lunghezze della scatola superiori a 1,50 m si dovranno adottare gabbioni muniti di diaframmi e più precisamente: 1 diaframma per scatole di lunghezza pari 2 m, 2 diaframmi per scatole di lunghezza pari a 3 m e 3 diaframmi per scatole di lunghezza pari a 4 m.
- 5. Gli elementi saranno assemblati utilizzando per cuciture e tiranti del filo di acciaio di pari caratteristiche di quello da cui è formato la retre, con diametro minimo di 2.2 mm, e galvanizzazione = 230 g/mq, o punti metallici meccanizzati, galvanizzati con Galmac del diametro di 3 mm e carico di rottura >= 1770 MPa

Art. 99 - Cavo in acciaio per funi da tiranti

- 1. Funi spirodiali formate da trefoli di fili in acciaio zincato, ad anima metallica AMZ
- 2. I trefoli saranno galvanizzati con lega eutettica di zinco e 5% alluminio in conformità a UNI EN 10264-2 classe B
- 3. Classe di resistenza alla trazione 1770-1960 N/mmq, norma UNI EN 12385-10+A1

Art. 100 - Cavo in acciaio per funi - maglie reti

1. Funi spirodiali formate da trefoli di fili in acciaio zincato, ad anima metallica AMZ

- 2. I trefoli saranno galvanizzati con lega eutettica di zinco e 5% alluminio in conformità a UNI EN 10264-2 classe A.
- 3. Classe di resistenza alla trazione 1770-1960 N/mmq, norma UNI EN 12385-10+A1
- 4. Carico minimo di rottura della fune pari a 30 KN secondo UNI EN 12385-4

Art. 101 - Misti granulari per fondazione stradale

1. Il misto granulare dovrà essere costituito da una miscela di aggregati lapidei di primo impiego, eventualmente corretta mediante l'aggiunta o la sottrazione di determinate frazioni granulometriche per migliorarne le proprietà fisico-meccaniche.

Nella sovrastruttura stradale il misto granulare dovrà essere impiegato per la costruzione di stati di fondazione e di base.

Gli aggregati grossi (trattenuti al crivello uni n. 5) e gli aggregati fini sono gli elementi lapidei che formano il misto granulare.

L'aggregato grosso in generale deve avere dimensioni non superiori a 71 mm e deve essere costituito da elementi ottenuti dalla frantumazione di rocce di cava massive o di origine alluvionale, da elementi naturali a spigoli vivi o arrotondati. Tali elementi possono essere di provenienza o natura petrografica diversa purché, per ogni tipologia, risultino soddisfatti i requisiti indicati nella successiva tabella, relativa alle strade urbane di quartiere e locali.

Indicatori di qualità			Strato pavimentazione	
Parametro	Normativa	Unità di misura	Fondazione	Base
Los Angeles	uni en 1097-2	%	≤ 40	≤ 30
Micro Deval umida	cnr b.u. n. 109/85	%	-	≤ 25
Quantità di frantumato	-	%	-	≤ 60
Dimensione max	cnr b.u. n. 23/71	mm	63	63
Sensibilità al gelo (se necessario)	cnr b.u. n. 80/80	%	≤ 30	≤ 20

L'aggregato fine deve essere costituito da elementi naturali o di frantumazione che possiedano le caratteristiche riassunte nella tabella seguente, relativa alle strade urbane di quartiere e locali.

Passante al crivello uni n. 5				
Indicatori di qualità	Strato pavimentazio	one		
Parametro	Normativa	Unità di misura	Fondazione	Base
Equivalente in sabbia	uni en 933-8	%	≥ 40	≥ 50
Indice plasticità	uni cen iso /TS 17892-12	%	≤ 6	N.P.
Limite liquido	uni cen iso /TS 17892-12	%	≤ 35	≤ 25
Passante allo 0,075	cnr b.u. n. 75/80	%	≤ 6	≤ 6

Ai fini dell'accettazione, prima dell'inizio dei lavori, l'impresa è tenuta a predisporre la qualificazione degli aggregati tramite certificazione attestante i requisiti prescritti. Tale certificazione deve essere rilasciata da un laboratorio ufficiale.

2. La miscela di aggregati da adottarsi per la realizzazione del misto granulare deve possedere la composizione granulometrica prevista dalla norma UNI EN 933-1.

L'indice di portanza cbr (uni en 13286-47) dopo quattro giorni di imbibizione in acqua (eseguita sul materiale passante al crivello uni 25 mm) non deve essere minore del valore assunto per il calcolo della pavimentazione e, in ogni caso, non minore di 30. \dot{E} , inoltre, richiesto che tale condizione sia verificata per un intervallo di \pm 2% rispetto all'umidità ottimale di costipamento.

Il modulo resiliente (MR) della miscela impiegata deve essere uguale a quello progettuale della pavimentazione (norma aashto t294).

Il modulo di deformazione (Md) dello strato deve essere uguale a quello progettuale della pavimentazione (cnr b.u. n. 146/1992).

Il modulo di reazione (k) dello strato deve essere uguale a quello progettuale della pavimentazione (cnr b.u. n. 92/1983).

- I diversi componenti (in particolare le sabbie) devono essere del tutto privi di materie organiche, solubili, alterabili e friabili.
- 3. L'impresa è tenuta a comunicare alla direzione dei lavori, con congruo anticipo rispetto all'inizio delle lavorazioni, la composizione dei misti granulari che intende adottare. Per ogni provenienza del materiale, ciascuna miscela proposta deve essere corredata da una documentazione dello studio di composizione effettuato, che deve comprendere i risultati delle prove sperimentali, effettuate presso un laboratorio ufficiale. Lo studio di laboratorio deve comprendere la determinazione della curva di costipamento con energia aasho modificata (cnr b.u. n. 69/1978).
 - Una volta accettato da parte della direzione dei lavori lo studio delle miscele, l'impresa deve rigorosamente attenersi a esso.
- 4. L'impresa deve indicare, per iscritto, le fonti di approvvigionamento, le aree e i metodi di stoccaggio (con i provvedimenti che intende adottare per la protezione dei materiali dalle acque di ruscellamento e da possibili inquinamenti), il tipo di lavorazione che intende adottare, il tipo e la consistenza dell'attrezzatura di cantiere che verrà impiegata.
- 5. Il controllo della qualità dei misti granulari e della loro posa in opera, deve essere effettuato mediante prove di laboratorio sui materiali costituenti, sul materiale prelevato in situ al momento della stesa, oltreché con prove sullo strato finito. L'ubicazione dei prelievi e la frequenza delle prove sono indicati nella tabella seguente.

Tipo di campione	Ubicazione prelievo	Frequenza prove
Aggregato grosso	Impianto	Iniziale, poi secondo D.L.
Aggregato fine	Impianto	Iniziale, poi secondo D.L.
Miscela	Strato finito	Giornaliera oppure ogni 1000 m ³ di stesa
Sagoma	Strato finito	Ogni 20 m o ogni 5 m
Strato finito (densità in situ)	Strato finito	Giornaliera oppure ogni 1000 m ² di stesa
Strato finito (portanza)	Strato finito o pavimentazione	Ogni 000 m ² m di fascia stesa

- 6. Le caratteristiche di accettazione dei materiali dovranno essere verificate prima dell'inizio dei lavori, ogni qualvolta cambino i luoghi di provenienza dei materiali.
 - La granulometria del misto granulare va verificata giornalmente, prelevando il materiale in situ già miscelato, subito dopo avere effettuato il costipamento. Rispetto alla qualificazione delle forniture, nella curva granulometrica sono ammesse variazioni delle singole percentuali di \pm 5 punti per l'aggregato grosso e di \pm 2 punti per l'aggregato fine. In ogni caso, non devono essere superati i limiti del fuso assegnato. L'equivalente in sabbia dell'aggregato fine va verificato almeno ogni tre giorni lavorativi.
 - A compattazione ultimata, la densità del secco *in situ*, nel 95% dei prelievi, non deve essere inferiore al 98% del valore di riferimento (γ_{smax}) misurato in laboratorio sulla miscela di progetto e dichiarato prima dell'inizio dei lavori. Le misure della densità sono effettuate secondo la norma cnr B.U. n. 22/1972. Per valori di densità inferiori a quelli previsti viene applicata una detrazione per tutto il tratto omogeneo a cui il valore si riferisce:
 - del 10% dell'importo dello strato, per densità in situ comprese tra il 95 e il 98% del valore di riferimento;
 - del 20% dell'importo dello strato, per densità *in situ* comprese tra il 93 e il 95% del valore di riferimento. Il confronto tra le misure di densità *in situ* e i valori ottenuti in laboratorio può essere effettuato direttamente quando la granulometria della miscela in opera è priva di elementi trattenuti al crivello uni 25

La misura della portanza deve accertare che le prestazioni dello strato finito soddisfino le richieste degli elaborati di progetto e siano conformi a quanto dichiarato prima dell'inizio dei lavori nella documentazione presentata dall'impresa.

mm.

Al momento della costruzione degli strati di pavimentazione sovrastanti, la media dei valori di portanza del misto granulare su ciascun tronco omogeneo non dovrà essere inferiore a quella prevista in progetto.

Le superfici finite devono risultare perfettamente piane, con scostamenti rispetto ai piani di progetto non superiori a 10 mm, controllati a mezzo di un regolo di 4 m di lunghezza e disposto secondo due direzioni ortogonali.

La verifica delle quote di progetto dovrà eseguirsi con procedimento topografico, prevedendo in senso longitudinale un distanziamento massimo dei punti di misura non superiore a 20 m nei tratti a curvatura costante e non superiore a 5 m nei tratti a curvatura variabile, di variazione della pendenza trasversale.

Nelle stesse sezioni dei controlli longitudinali di quota dovrà verificarsi la sagoma trasversale, prevedendo almeno due misure per ogni parte a destra e a sinistra dell'asse stradale.

Lo spessore medio dovrà essere quello prescritto, con una tolleranza in più o in meno del 5%, purché tale differenza si presenti solo saltuariamente.

Art. 102 - Conglomerati bituminosi a caldo tradizionali

- 1. I conglomerati bituminosi a caldo tradizionali sono miscele, dosate a peso o a volume, costituite da aggregati lapidei di primo impiego, bitume semisolido, additivi ed eventuale conglomerato riciclato.
- 2. Il legante deve essere costituito da bitume semisolido ed, eventualmente, da quello proveniente dal conglomerato riciclato additivato con acf (attivanti chimici funzionali).

A seconda della temperatura media della zona di impiego, il bitume deve essere del tipo 50/70 oppure 80/100, con le caratteristiche indicate nella tabella seguente, con preferenza per il 50/70 per le temperature più elevate.

Parametro	Normativa	U.M.	Tipo 50/70	Tipo 80/100
Penetrazione a 25 °C	uni en 1426, CNR B.U. n. 24/1971	dmm	50-70	80-100
Punto di rammollimento	uni en 1427, CNR B.U. n. 35/1973	°C	46-56	40-44
Punto di rottura (Fraass)	cnr b.u. n. 43 /1974	°C	≤ - 8	≤ - 8
Solubilità in Tricloroetilene	cnr b.u. n. 48/1975	%	≥ 99	≥ 99
Viscosità dinamica a 160 °C, g = 10s 1	Pren 13072-2	Pa·s	≤ 0,3	≤ 0,2
Valori dopo RTFOT	uni en 12607-1	-	_	
Volatilità	cnr b.u. n. 54/1977	%	≤ 0,5	≤ 0,5
Penetrazione residua a 25 °C	uni en 1426, cnr b.u. n. 24/71	%	≥ 50	≥ 50
Incremento del punto di rammollimento	uni en 1427, cnr b.u. n. 35/73	°C	≤ 9	≤ 9

Ai fini dell'accettazione, prima dell'inizio dei lavori, l'impresa è tenuta a predisporre la qualificazione del prodotto tramite certificazione attestante i requisiti indicati. Tale certificazione sarà rilasciata dal produttore o da un laboratorio ufficiale di cui all'art. 59 del D.P.R. n. 380/2001.

- 3. Gli additivi sono prodotti naturali o artificiali che, aggiunti agli aggregati o al bitume, consentono di migliorare le prestazioni dei conglomerati bituminosi.
 - Gli attivanti d'adesione, sostanze tensioattive che favoriscono l'adesione bitume-aggregato, sono additivi utilizzati per migliorare la durabilità all'acqua delle miscele bituminose.
 - Il loro dosaggio, da specificare obbligatoriamente nello studio della miscela, potrà variare a seconda delle condizioni di impiego, della natura degli aggregati e delle caratteristiche del prodotto.
 - L'attivante di adesione scelto deve presentare caratteristiche chimiche stabili nel tempo, anche se sottoposto a temperatura elevata (180 °C) per lunghi periodi (15 giorni).
 - L'immissione delle sostanze tensioattive nel bitume deve essere realizzata con attrezzature idonee, tali da garantire l'esatto dosaggio e la loro perfetta dispersione nel legante bituminoso.
 - La presenza e il dosaggio degli attivanti d'adesione nel bitume vengono verificati mediante la prova di separazione cromatografica su strato sottile (prova colorimetrica).
- 4. L'aggregato grosso deve essere costituito da elementi ottenuti dalla frantumazione di rocce lapidee, da elementi naturali tondeggianti, da elementi naturali tondeggianti frantumati, da elementi naturali a spigoli vivi. Tali elementi potranno essere di provenienza o natura petrografica diversa purché, per ogni tipologia, risultino soddisfatti i requisiti previsti al variare del tipo di strada. La seguente tabella si riferisce alle strade urbane di quartiere e locali.

Trattenuto al crivello uni n. 5					
Indicatori di qualità Strato pavimentazione					
Parametro	U.M.	Base	Binder	Usura	
Los Angeles ¹	uni en 1097-2	%	≤40	≤ 40	≤ 25
Micro Deval Umida ¹	uni en 1097-1	%	≤ 35	≤ 35	≤ 20
Quantità di frantumato	-	%	≥ 60	≥ 70	100

Dimensione max	cnr b.u. n. 23/1971	mm	40	30	20
Sensibilità al gelo	cnr b.u. n. 80/1980	%	≤ 30	≤ 30	≤30
Spogliamento	cnr b.u. n. 138/1992	%	≤ 5	≤5	0
Passante allo 0,075	cnr b.u. n. 75/1980	%	≤ 2	≤2	≤2
Indice appiattimento	cnr b.u. n. 95/1984	%	-	≤ 35	≤30
Porosità	cnr b.u. n. 65/1978	%	-	≤1,5	≤1,5
cla	cnr b.u. n. 140/1992	%	-	-	≥40

 $^{^1}$ Uno dei due valori dei coefficienti Los Angeles e Micro Deval Umida può risultare maggiore (fino a due punti) rispetto al limite indicato, purché la loro somma risulti inferiore o uguale alla somma dei valori limite indicati.

Nello strato di usura, la miscela finale degli aggregati deve contenere una frazione grossa di natura basaltica o porfirica, con cla ≥ 43, pari almeno al 30% del totale.

In alternativa all'uso del basalto o del porfido, si possono utilizzare inerti porosi naturali (vulcanici) o artificiali (argilla espansa resistente o materiali similari, scorie d'altoforno, loppe, ecc.) a elevata rugosità superficiale (cla ≥ 50) di pezzatura 5/15 mm, in percentuali in peso comprese tra il 20% e il 30% del totale, a eccezione dell'argilla espansa che deve essere di pezzatura 5/10 mm, con percentuale di impiego in volume compresa tra il 25% e il 35% degli inerti che compongono la miscela.

5. L'aggregato fine deve essere costituito da elementi naturali e di frantumazione. A seconda del tipo di strada, gli aggregati fini per conglomerati bituminosi a caldo tradizionali devono possedere determinate caratteristiche relative ai parametri qui riportati:

Parametro	Normativa
Equivalente in sabbia	uni en 933-8
Indice plasticità	uni cen iso /ts 17892-12
Limite liquido	uni cen iso /ts 17892-12
Passante allo 0,075	cnr b.u. n. 75/1980
Quantità di frantumato	cnr b.u. n. 109/1985

Per aggregati fini utilizzati negli strati di usura, il trattenuto al setaccio 2 mm non deve superare il 10%, qualora gli stessi provengano da rocce aventi un valore di cla \geq 42.

Il filler, frazione passante al setaccio 0,075 mm, deve soddisfare i requisiti indicati nella seguente tabella valida per tutte le strade.

Indicatori di qualità			Strato pavimentazione
Parametro	Normativa	Unità di misura	Base Binder Usura
Spogliamento	cnr b.u. n. 138/1992	%	≤5
Passante allo 0,18	cnr b.u. n. 23/1971	%	100
Passante allo 0,075	cnr b.u. n. 75/1980	%	≥80
Indice plasticità	uni cen iso /TS 17892-12	-	N.P.
Vuoti Rigden	cnr b.u. n. 123/1988	%	30-45
Stiffening Power Rapporto	cnr b.u. n. 122/1988	DPA	≥5
filler/bitumen = 1,5			

Ai fini dell'accettazione, prima dell'inizio dei lavori, l'impresa è tenuta a predisporre la qualificazione degli aggregati tramite certificazione attestante i requisiti prescritti. Tale certificazione deve essere rilasciata da un laboratorio ufficiale, di cui all'art. 59 del D.P.R. n. 380/2001.

Per conglomerato riciclato deve intendersi il conglomerato bituminoso preesistente proveniente dalla frantumazione in frantoio di lastre o blocchi di conglomerato demolito con sistemi tradizionali oppure dalla fresatura in situ eseguita con macchine idonee (preferibilmente a freddo).

Le percentuali in peso di materiale riciclato riferite al totale della miscela degli inerti devono essere comprese nei limiti di seguito specificati:

- conglomerato per strato di base: £ 30%;
- conglomerato per strato di collegamento: £ 25%;
- conglomerato per tappeto di usura: £ 20%.

Per la base può essere utilizzato conglomerato riciclato di qualsiasi provenienza; per il binder materiale proveniente da vecchi strati di collegamento e usura; per il tappeto materiale provenienti solo da questo strato.

La percentuale di conglomerato riciclato da impiegare va obbligatoriamente dichiarata nello studio preliminare della miscela che l'impresa è tenuta a presentare alla direzione dei lavori prima dell'inizio dei lavori.

6. La miscela degli aggregati di primo impiego e del conglomerato da riciclare, da adottarsi per i diversi strati, deve avere una composizione granulometrica contenuta nei fusi riportati nella tabella successiva. La percentuale di legante totale (compreso il bitume presente nel conglomerato da riciclare), riferita al peso degli aggregati, deve essere compresa nei limiti indicati di seguito.

				Usura		
Serie crivelli e	setacci uni	Base	Binder	Α	В	С
Crivello	40	100	-	-	-	-
Crivello	30	80-100	-	-	-	-
Crivello	25	70-95	100	100	-	-
Crivello	15	45-70	65-85	90-100	100	-
Crivello	10	35-60	55-75	70-90	70-90	100
Crivello	5	25-50	35-55	40-55	40-60	45-65
Setaccio	2	20-35	25-38	25-38	25-38	28- 45
Setaccio	0,4	6-20	10-20	11-20	11-20	13-25
Setaccio	0,18	4-14	5-15	8-15	8-15	8-15
Setaccio	0,075	4-8	4-8	6-10	6-10	6-10
% di bitume		4,0-5,0	4.5-5.5	4,8-5,8	5.0-6.0	5.2-6.2

Per i tappeti di usura, il fuso A è da impiegare per spessori superiori a 4 cm, il fuso B per spessori di 3-4 cm, e il fuso C per spessori inferiori a 3 cm.

La quantità di bitume nuovo di effettivo impiego deve essere determinata mediante lo studio della miscela con metodo volumetrico. In via transitoria si potrà utilizzare, in alternativa, il metodo Marshall.

Le caratteristiche richieste per lo strato di base, il binder e il tappeto di usura sono riportate nelle seguenti tabelle.

Metodo volumetrico	Strato pavimentaz	ione			
Condizioni di prova	Unità di misura	Base	Binder	Usura	
Angolo di rotazione		1,25° ± 0,02			
Velocità di rotazione	Rotazioni/min	30			
Pressione verticale	kPa	600			
Diametro del provino	mm	150	150		
Risultati richiesti	-	-	-	-	
Vuoti a 10 rotazioni	%	10-14	10-14	10-14	
Vuoti a 100 rotazioni ¹	%	3-5	3-5	4-6	
Vuoti a 180 rotazioni	%	> 2	> 2	> 2	
Resistenza a trazione indiretta a 25 °C ²	N/mm ²	-	-	0,6-0,9	
Coefficiente di trazione indiretta a 25 °C ²	N/mm ²	-	-	>50	
Perdita di resistenza a trazione indiretta a 25 °C dopo 15 giorni di immersione in acqua	%	≤5	≤ 25	≤ 25	

 $^{^{}m 1}$ La densità ottenuta con 100 rotazioni della pressa giratoria verrà indicata nel seguito con D_G .

dove

D = dimensione in mm della sezione trasversale del provino

Dc = deformazione a rottura

Rt = resistenza a trazione indiretta.

Metodo Marshall	Strato pavimentazione				
Condizioni di prova	Unità di misura Base Binder Usura				
Costipamento	75 colpi per faccia				
Risultati richiesti				-	
Stabilità Marshall	kN	8	10	11	
Rigidezza Marshall	kN/mm	> 2,5	3-4,5	3-4,5	

² Su provini confezionati con 100 rotazioni della pressa giratoria.

 $^{^3}$ Coefficiente di trazione indiretta: cti = $\pi/2$ *DRt/Dc*

Vuoti residui ¹	%	4-7	4-6	3-6
Perdita di stabilità Marshall dopo 15 giorni di	%	≤25	≤25	≤25
immersione in acqua				
Resistenza a trazione indiretta a 25 °C	N/mm ²	-	-	0,7-1
Coefficiente di trazione indiretta 25 °C	N/mm ²	-	-	> 70
¹ La densità Marshall viene indicata nel seguito con	Д Μ.			

7. L'impresa è tenuta a presentare alla direzione dei lavori, con congruo anticipo rispetto all'inizio delle lavorazioni e per ciascun cantiere di produzione, la composizione delle miscele che intende adottare. Ciascuna composizione proposta deve essere corredata da una completa documentazione degli studi effettuati.

Una volta accettata da parte della direzione dei lavori la composizione della miscela proposta, l'impresa deve attenervisi rigorosamente.

Nella curva granulometrica sono ammessi scostamenti delle singole percentuali dell'aggregato grosso di \pm 5 per lo strato di base e di \pm 3 per gli strati di binder e usura. Sono ammessi scostamenti dell'aggregato fine (passante al crivello UNI n. 5) contenuti in \pm 2; scostamenti del passante al setaccio UNI 0,075 mm contenuti in \pm 1,5.

Per la percentuale di bitume è tollerato uno scostamento di ± 0,25.

- 8. Il conglomerato deve essere confezionato mediante impianti fissi automatizzati, di caratteristiche idonee, mantenuti sempre perfettamente funzionanti in ogni loro parte.
 - L'impianto deve, comunque, garantire uniformità di produzione ed essere in grado di realizzare le miscele rispondenti a quelle indicate nello studio presentato ai fini dell'accettazione.
 - Ogni impianto deve assicurare il riscaldamento del bitume alla temperatura richiesta e a viscosità uniforme, fino al momento della miscelazione, oltre al perfetto dosaggio sia del bitume sia dell'additivo.
- 9. Prima della realizzazione dello strato di conglomerato bituminoso, è necessario preparare la superficie di stesa, allo scopo di garantire un'adeguata adesione all'interfaccia mediante l'applicazione, con dosaggi opportuni, di emulsioni bituminose aventi le caratteristiche progettuali. A seconda che lo strato di supporto sia in misto granulare oppure in conglomerato bituminoso, la lavorazione corrispondente prenderà il nome, rispettivamente, di mano di ancoraggio e mano d'attacco.

Per mano di ancoraggio si intende un'emulsione bituminosa a rottura lenta e bassa viscosità, applicata sopra uno strato in misto granulare prima della realizzazione di uno strato in conglomerato bituminoso. Scopo di tale lavorazione è quello di riempire i vuoti dello strato non legato, irrigidendone la parte superficiale, fornendo al contempo una migliore adesione per l'ancoraggio del successivo strato in conglomerato bituminoso. Il materiale da impiegare a tale fine è rappresentato da un'emulsione bituminosa cationica applicata con un dosaggio di bitume residuo pari ad almeno 1 kg/m², le cui caratteristiche sono riportate nella tabella seguente.

Indicatore di qualità	Normativa	Unità di misura	Cationica 55%
Polarità	cnr b.u. n. 99/1984	-	Positiva
Contenuto di acqua (%) peso	cnr b.u. n. 101/1984	%	45±2
Contenuto di bitume+flussante	cnr b.u. n. 100/1984	%	55±2
Flussante (%)	cnr b.u n. 100/1984	%	1-6
Viscosità Engler a 20 °C	cnr b.u n. 102/1984	°E2-6	
Sedimentazione a 5 g	cnr b.u n. 124/1988	%	< 5
Residuo bituminoso	-	-	-
Penetrazione a 25 °C	cnr b.u n. 24/1971	dmm	180-200
Punto di rammollimento	uni en 1427, cnr b.u n. 35/73	°C	30±5

Per mano d'attacco si intende un'emulsione bituminosa a rottura media oppure rapida (in funzione delle condizioni di utilizzo), applicata sopra una superficie di conglomerato bituminoso prima della realizzazione di un nuovo strato, avente lo scopo di evitare possibili scorrimenti relativi, aumentando l'adesione all'interfaccia.

Le caratteristiche e il dosaggio del materiale da impiegare variano a seconda che l'applicazione riguardi la costruzione di una nuova sovrastruttura oppure un intervento di manutenzione.

Nel caso di nuove costruzioni, il materiale da impiegare è rappresentato da un'emulsione bituminosa cationica (al 60% oppure al 65% di legante), dosata in modo che il bitume residuo risulti pari a 0,30 kg/m², le cui caratteristiche sono riportate nella tabella che segue.

Indicatore di qualità	Normativa	Unità di	Cationica 60%	Cationica 65%
		misura		
Polarità	cnr b.u. n. 99/1984	-	Positiva	Positiva
Contenuto di acqua (%) peso	cnr b.u. n. 101/1984	%	40±2	35±2
Contenuto di bitume+flussante	cnr b.u. n. 100/1984	%	60±2	65±2
Flussante (%)	cnr b.u. n. 100/1984	%	1-4	1-4
Viscosità Engler a 20 °C	cnr b.u. n. 102/1984	°E	5-10	15-20
Sedimentazione a 5 g	cnr b.u. n. 124/1988	%	< 8	< 8
Residuo bituminoso	-	-	-	-
Penetrazione a 25 °C	cnr b.u. n. 24/1971	dmm	< 100	< 100
Punto di rammollimento	uni en 1427, cnr b.u. n. 35/73	°C	> 40	> 40

Qualora il nuovo strato venga realizzato sopra una pavimentazione esistente, deve utilizzarsi un'emulsione bituminosa modificata dosata in modo tale che il bitume residuo risulti pari a 0,35 kg/m², avente le caratteristiche riportate nella tabella seguente.

Prima della stesa della mano d'attacco, l'impresa dovrà rimuovere tutte le impurità presenti e provvedere alla sigillatura di eventuali zone porose e/o fessurate mediante l'impiego di una malta bituminosa sigillante.

Indicatore di qualità	Normativa	Unità di misura	Modificata 70%
Polarità	cnr b.u. n. 99/1984	-	positiva
Contenuto di acqua % peso	cnr b.u. n. 101/1984	%	30±1
Contenuto di bitume+flussante	cnr b.u. n. 100/1984	%	70±1
Flussante (%)	cnr b.u. n. 100/1984	%	0
Viscosità Engler a 20 °C	cnr b.u. n. 102/1984	°E	> 20
Sedimentazione a 5 g	cnr b.u. n. 124/1988	%	< 5
Residuo bituminoso	-	-	-
Penetrazione a 25 °C	cnr b.u. n. 24/1971	dmm	50-70
Punto di rammollimento	cnr b.u. n. 35/1973	°C	> 65

Nel caso di stesa di conglomerato bituminoso su pavimentazione precedentemente fresata, è ammesso l'utilizzo di emulsioni bituminose cationiche e modificate maggiormente diluite (fino a un massimo del 55% di bitume residuo), a condizione che gli indicatori di qualità (valutati sul bitume residuo) e le prestazioni richieste rispettino gli stessi valori riportati nella tabella precedente.

Ai fini dell'accettazione del legante per mani d'attacco, prima dell'inizio dei lavori, l'impresa è tenuta a predisporre la qualificazione del prodotto tramite certificazione attestante i requisiti indicati e a produrre copia dello studio prestazionale eseguito con il metodo astra (metodologia riportata in allegato B) rilasciato dal produttore.

10. Il controllo della qualità dei conglomerati bituminosi e della loro posa in opera deve essere effettuato mediante prove di laboratorio sui materiali costituenti, sulla miscela, sulle carote estratte dalla pavimentazione e con prove in situ.

Ogni prelievo deve essere costituito da due campioni, uno dei quali viene utilizzato per i controlli presso un laboratorio ufficiale di cui all'art. 59 del D.P.R. n. 380/2001. L'altro campione, invece, resta a disposizione per eventuali accertamenti e/o verifiche tecniche successive.

Sui materiali costituenti devono essere verificate le caratteristiche di accettabilità.

Sulla miscela deve essere determinata la percentuale di bitume, la granulometria degli aggregati e la quantità di attivante d'adesione; devono, inoltre, essere controllate le caratteristiche di idoneità mediante la pressa giratoria.

I provini confezionati mediante la pressa giratoria devono essere sottoposti a prova di rottura diametrale a 25 °C (brasiliana).

In mancanza della pressa giratoria, devono essere effettuate prove Marshall:

- peso di volume (dm);
- stabilità e rigidezza (cnr b.u. n. 40/1973);
- percentuale dei vuoti residui (cnr b.u. n. 39/1973);
- resistenza alla trazione indiretta (prova brasiliana, cnr b.u. n. 134/1991).

Dopo la stesa, la direzione dei lavori preleverà alcune carote per il controllo delle caratteristiche del calcestruzzo e la verifica degli spessori.

Sulle carote devono essere determinati il peso di volume, la percentuale dei vuoti residui e lo spessore, facendo la media delle misure (quattro per ogni carota) e scartando i valori con spessore in eccesso di oltre il 5% rispetto a quello di progetto.

Per il tappeto di usura dovrà, inoltre, essere misurata l'aderenza (resistenza di attrito radente) con lo skid tester, secondo la norma cnr b.u. n. 105/1985.

Art. 103 - Ferro

1. Il ferro comune dovrà essere di prima qualità, eminentemente duttile e tenace e di marcatissima struttura fibrosa. Esso dovrà essere malleabile, liscio alla superficie esterna, privo di screpolature, saldature e di altre soluzioni di continuità.